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Abstract

We have conducted a study on how many opportunities are necessary, on average,
for learners to achieve mastery of a skill, also called a knowledge component (KC), as
defined in the Open Learning Initiative (OLI) digital courseware. The study used
datasets from 74 different course instances in four topic areas comprising 3813
students and 1.2 million transactions. The analysis supports our claim that the
number of opportunities to reach mastery gives us new information on both
students and the development of course components. Among the conclusions are a
minimum of seven opportunities are necessary for each knowledge component,
more if the prior knowledge among students are uneven within a course. The
number of KCs in a course increases the number of opportunities needed. The
number of opportunities to reach mastery can be used to identify KCs that are
outliers that may be in need of better explanations or further instruction.
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Prediction, College students, Course preparation

Introduction
When designing a new course or improving an existing course, there is a need to esti-

mate the number of practice opportunities minimally needed to use prediction models

to effectively predict student mastery of the learning objectives and skills. Estimates

range from a minimum of two questions for a hidden Markov prediction model (Bier,

Lip, Strader, Thille, & Zimmaro, 2014) to four questions for a Bayesian Knowledge Tra-

cing (BKT) prediction model (Baker, R. S. J., personal communication, January 15,

2015). However, more empirical evidence is needed to better understand how many

questions, or practice opportunities, are needed to allow all students to achieve pre-

dicted mastery. Creating validated questions is time consuming, there are estimates of

on average one hour per problem (Piasentin, 2010). Often limited resources require

course designers to make tradeoffs in terms of the number of activities and assessment

questions they can develop when designing a new course or revising an existing course.

For example, The Raccoon Gang (2018) estimates that it takes 100–160 h to produce

one hour of ready online learning content. Therefore, it is essential not to waste re-

sources on developing questions that are not needed, while still assuring that the

learners will not run out of problem opportunities.

Smart Learning Environments
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The Open Learning Initiative (OLI), an open educational resource project initiated at

Carnegie Mellon University (CMU) and now also housed at Stanford University, creates

innovative online courseware and conducts research to improve learning and transform

higher education. OLI has begun some initial explorations into using basic Bayesian

hierarchical models to predict student mastery (Bier et al., 2014) where learning objec-

tives are defined for each course and are then broken down into skills (also called

knowledge components, or KCs). Learning objectives identify what a student will be

able to do or know at the end of an instructional unit. Skills define the sub-objective,

or knowledge component, that comprise a given learning objective. Students’ mastery

of skills are tested through the problems students answer in the digital courseware. All

answers are logged. A predictive learning model is then used to determine when each

student achieves mastery of each learning objective. In general, predictive learning

models are used in learning analytics to predict how well students have mastered a

skill, knowledge component, or concept. Historically, OLI has used a Bayesian hierarch-

ical statistical model. The model used students’ responses to previous questions to pre-

dict students’ learning states (learned or unlearned) for a given skill but did not

account for guessing (correctly answering a question when the student does not know

the skill) or slipping (incorrectly answering a question when the student does know the

skill). Theoretically, learners in OLI courses would not necessarily have to answer all

problems, just a sufficient number to make it probable they have understood a concept.

However, OLI courses do not provide students with a path for moving on after they

had mastered a skill, either through a forced pathway or by providing data to the stu-

dent that she had mastered the skill. The OLI prediction model had a built-in assump-

tion that a minimum of two practice opportunities were needed to effectively

determine if a student had mastered a skill.

It is still not clear how many opportunities are sufficient in general. We can expect

that the number will vary among different KCs, learners and courses, but how much,

and how much is the variance? This information could inform course designers. What

is the optimal number of problems needed to prevent students from running out of

problems practice opportunities before they have mastered a skill while at the same

time not spending too many resources on developing problems. This paper will explore

what is the minimum number of practice opportunities needed to predict mastery for

OLI courses that use a basic Bayesian hierarchical statistical model. Additionally, we

will explore whether the minimum number of practice opportunities varies by course

content or by level of institution.

Background
Our ability to retain a piece of information improves with repeated exposure and de-

cays with delay since the last exposure (Reddy, Labutov, Banerjee, and Joachims, 2016).

Continual repetition usually eventuates in diminished returns (Chen & Squire, 1990;

Miller, 1978). To support long-term retention, more practice is necessary but needs to

be spread out on an optimal schedule (Anderson et al., 1999; Pavlik & Anderson,

2005). However, for initial learning, more practice becomes over-practice, and once

learned, there are also downsides with continued repetition and might even be detri-

mental under certain conditions. Memory for repeated items decline with increased

repetition under incidental-learning conditions (English & Visser, 2013). Response
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times were significantly longer when a category was repeated aloud for 30 s, as com-

pared to only three seconds (Smith, 1984). This decline in performance with prolonged

rehearsal was termed the massed repetition decrement (Kuhl & Anderson, 2011).

One of the downsides of too much repetition is the time it takes from other school

subjects and social life. Students who do more hours of homework experience greater

behavioral engagement in school but also more academic stress, physical health prob-

lems, and lack of balance in their lives (Galloway et al., 2013). Many teachers believe

that giving students more practice problems is beneficial and “would like to have the

students work on more practice problems”, even when “[students] were not making any

mistakes and were progressing through the tutor quickly” (Cital, 2006 in Cen, Koedinger

& Junker, 2007).

However, it is possible to reduce study time without loss of learning. In a study of high

school students participating in the Optimized Cognitive Tutor geometry curriculum, it

was found that 58% out of 4102 practices and 31% of 636 exercise questions were done

after the students had reached mastery (Cen et al., 2007). Results were compared to stu-

dents participating in the traditional Cognitive Tutor geometry curriculum. Analyses indi-

cated that students in the optimized condition saved a significant amount of time in the

optimized curriculum units, compared with the time spent by the control group.

OLI evaluations have investigated the effectiveness of both stand-alone (completely online)

and hybrid (supplemented with teacher interaction) compared to traditional instruction. Most

remarkable is a study on Statistics students who learned a full semester’s worth of material in

half the time while performing as well or better on tests and final exam compared to students

learning from traditional instruction over a full semester (Lovett et al., 2008).

Online instruction thus can surpass traditional instruction in efficiency, but to do

this, online systems also requires a lot of practice problems and these can be resource

demanding to construct and verify. There are generic ways to define certain problems

so that the possibility of running out of problems will, in practice, never occur (Bälter,

Enström, and Klingenberg, 2013). However, these generic ways require possibilities to

define questions and answers from a set of variables. The question and its answers need

to be programmed. These features are rare in most learning management systems,

which make the number of problems necessary to construct an important factor when

developing new courses. Additionally, the OLI courses are designed to support scaf-

folded learning focused on conceptual understanding not procedural repetition. There-

fore, problems with randomly generated values for a given set of variables that require

calculations to answer do not fit the learning objectives for most OLI courses.

In order to use the data stream from online learning environments to estimate learn-

ing we need a theoretical model of learning. We, as many others, begin with learning

objectives that precisely specify the skills and competences needed to be mastered by

the learner. Such learning objectives are crucial for both the design process of effective

teaching, on the one hand, and the assessment of the learning outcome (i.e., skills and

competences), on the other hand (Marte et al., 2008). A further extension is to assume

dependencies between the skills, (e.g. Korossy, 1999), inducing a competence structure

on the set of skills, but this is not in use (yet) in OLI. A comprehensive review and

evaluation of existing frameworks for teaching, learning and thinking skills is provided

in a report by Moseley et al. (2004). There are also ways to use statistical modeling to

create a skills map that reportedly outperforms human experts (Matsuda et al., 2015).
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The Bayesian hierarchical learning model used to predict mastery of skills and learn-

ing objectives in OLI courses assumes a two-state learning model. Learners are either

in the learned or unlearned state for a given skill. Students can transition from un-

learned to learned state at each opportunity to practice that skill (typically by answering

a question on the skill). After each opportunity, the model estimates the probability

that the student has learned the skill (p(L)). At each opportunity, the estimate for p(L)

is updated based on whether the student answered the question correctly or incorrectly

(Corbett & Anderson, 1994).

OLI courses contain two types of opportunities: formative assessment questions em-

bedded throughout a module where students can answer the questions multiple times

with immediate feedback given after each attempt and summative assessment questions

at the end of a section module that act as “quizzes” or “checkpoints” before the student

progresses to the next section or module. All opportunities are equally weighted in the

OLI predictive learner model. The OLI predictive learner model uses only the student’s

first attempt at answering the problem as this is considered the most honest attempt.

The rationale for this is that the OLI system provides immediate feedback to all forma-

tive assessment questions so after answering a question for the first time students tend

to click through all the answer choices and review the feedback for each. Lastly, the

model used in OLI assumes that once a student learns the skill she cannot transition

back to the unlearned state (i.e., there is no parameter for forgetting in the model).

OLI has contributed much of its data to the Pittsburgh Science of Learning Center’s

DataShop (http://pslcdatashop.org/), a central repository to store research data that also

includes a set of analysis and reporting tools. In one of its standard reports, DataShop

provides “predicted learning curves” which are the average predicted error of a know-

ledge component over each of the learning opportunities. Learning curves as a method

to explain user-computer interaction evolved out of the work of Newell & Rosenbloom

(1981). They demonstrated how learning is a power function based on the number of

trials at practicing a skill. The greatest learning on a skill occurs early on and lessens

with additional practice (Newell & Rosenbloom, 1981). However, Anderson et al.

(1989) found that this power relationship may not always hold true with complex skills.

In general, learning curves can be used to demonstrate students’ learning rates over re-

peated trials practicing a skill (Koedinger & Mathan, 2004).

Other models

A full background on learning models is beyond the scope of this paper. However,

below we present a brief description of other learning models to demonstrate alter-

nate options for predicting student mastery. Additionally, we recognize the predic-

tion model currently used in OLI courses does not reflect recent advances in

learner modeling and as a result may introduce error into the modeling of know-

ledge components.

Other predictive learning models that have been developed are extensions of or new ap-

proaches to predicting student mastery. These models are used to predict the probability

that a student can answer the next question on a given skill correctly and use a binary

outcome for correctness (correct or incorrect). An assumption underlying these models is

that each question involves a single skill (Pardos, Gowda, Baker, & Heffernan, 2012).
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Bayesian Knowledge Tracing, or BKT, uses a similar modeling approach as the Bayes-

ian hierarchical learning model used by OLI in that is includes parameters for prior

learning and the transitioning from an unlearned to a learned state, but also includes

parameters for guessing (the student is in an unlearned state but correctly answered by

guessing) and slipping (the student is in a learned state but incorrectly answered due to

making a mistake) (Corbett & Anderson, 1994). This standard BKT model uses

skill-specific parameters. Yudelson, Koedinger, and Gordon (2013) discovered that in-

cluding student-specific parameters, specifically speed of learning, improved mastery

prediction compared to the standard BKT model. Lee & Brunskill (2012) used

student-skill pairs to build an individualized model and found that a considerable frac-

tion of students, as judged by individualized model, would have received a significantly

different amount of practice problems from the Intelligent Tutoring System. Standard

BKT models typically require a minimum of four opportunities per skill (R. S. J. Baker,

personal communication, January 15, 2015).

Additive Factor Models (AFM) is a logistic regression model that includes student

ability parameters, skill parameters, and learning rates. AFM assumes all students accu-

mulate knowledge in the same way and disregards the correctness of individual re-

sponses (Chi, Koedinger, Gordon, Jordon, & VanLahn, 2011).

Performance Factors Analysis (PFA) is also a logistic regression model that is an elab-

oration of the Rasch model based on Item Response Theory. PFA, unlike AFM, uses a

student’s number of prior failures (incorrect answers) and prior successes (correct an-

swers) on a skill to predict correctness. Unlike BKT, no iterative estimates of latent stu-

dent knowledge are made but rather the number of successes and failures are tracked

and these are used to predict future correctness (Pardos et al., 2012).

While knowledge tracing (KT), Additive Factor Models (AFM), and Performance Factor

Models (PFM) are the three most common student modeling methods (Chi et al., 2011),

there are other models emerging. A different approach to learning modeling is the use of

artificial neural networks. They are usually used to model complex relationships between

inputs and outputs and to find patterns in data. Neural networks can capture nonlinear

relationships between concepts, do not require a function to which the data need to be fit-

ted, and are updated as more historical data becomes available (Oladokun et al., 2008).

Deep Knowledge Tracing (DKT) is a flexible recurrent neural network model that not

only predicts students future performance based on their past activity but also supports

selecting the best sequence of learning items to present to a student (Piech et al., 2015).

In addition to BKT, AFM, PFA, and artificial neural network models, other predictive

models include linear, Markov, and rule induction models (Zukerman & Albrecht, 2001) as

well as regression, instance-based, regularization, decision-tree, clustering, deep learning, di-

mensionality reduction, and ensemble models (Brownlee, 2013). There are also adaptive learn-

ing models (Boulehouache et al., 2015) such as Felder-Silverman (Kolekar, Pai, & Pai, 2016).

Learning curves and their classification

When asking learners a question on a skill they are learning, instructors aim for many,

but not all, of the learners to be able to answer the question correctly. If no one is able

to answer the question correctly, it is above their present abilities, and if everyone can

answer it correctly it is not worth their effort. Regardless what the ideal percentage of
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correct answers for a first question should be, the learning system should give feedback

to individual learners about why their answer was wrong and how they should think in

order to get it right. When that is done correctly, we expect for the second question of

the same skill that the percentage of wrong answers is reduced, see Fig. 1.

There are many things that can go wrong: the instructions could be difficult to interpret,

the questions, or their answer alternatives, could be unclear or not realistic, the feedback

could be irrelevant, the sequence of problems could be wrong, the problems could be too

difficult or easy, the problems could be measuring a different skill than intended, etc.

However, when everything works well, we should be able to see learning curves similar to

Fig. 1, and if we do not, we know that the learning material needs more work.

When interpreting learning curves, a flat high curve indicates students did not learn the

skill, a flat low curve suggests that students already knew the skill and did not need fur-

ther instruction, and a curve that trends upwards indicates the skill is increasing in diffi-

culty rather than decreasing. Viewing learning curves can help make quick inferences

about how well students are learning various skills and which skills may need additional

instructional support and/or refinement in how they are assessed (Baker, 2010).

After several practice opportunities, we would like the risk of a wrong answer to ap-

proach zero to show that the learners have mastered a skill. However, we need to take

into account the possibilities of guesses and slips.. This mastery threshold is by default

20% in DataShop, where we store and analyze our data sets (Koedinger et al., 2010).

DataShop also includes an algorithm categorizes learning curves. If a curve is low

(below the 20% threshold) and flat, it indicates that students had mastered that skill

already when the course began or that they overpracticed. If the last point of the curve

is above the high error threshold (40% is default), then the curve is still high. If the

slope of the predicted learning curve (as determined by the Additive Factor Model

(AFM) algorithm) is close to zero (absolute value below 0.001 as default), then the

curve shows no learning. All KCs that do not fall into any of the above “bad” or “at

risk” categories are considered “good” learning curves in the sense that they appear to

indicate substantial student learning (PSLC DataShop, 2015). This classification is only

Fig. 1 Theoretical learning curve when instructions, questions and feedback are working properly
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done on KCs that have a sufficient number of students (10 is default) and opportunities

to answer (3 is default).

Methods
This study addresses the following research questions:

� What is the minimum number of practice opportunities needed to predict student

mastery of skills?

� Does the minimum number of practice opportunities vary by course content

(Statistics, Biology, Engineering Statics, and Psychology)?

� Does the minimum number of practice opportunities needed to predict mastery

vary by level of institution (Associate’s, Baccalaureate, Master’s and Doctoral

colleges/universities)?

We used OLI datasets stored at the Pittsburgh Science of Learning Center (PSLC)

DataShop from four different OLI topic areas: CC-Statistics Spring 2014, OLI Biology:

ALMAP spring 2014, OLI Engineering Statics - Fall 2011 - CMU and OLI Psychology

MOOC GT - Spring 2013 (100 students) (Koedinger et al., 2010).

The statistics dataset comprises student data from instructors who taught with the

OLI Probability & Statistics course in the spring 2014 term (January–May, 2014). This

course introduces students to the basic concepts and logic of statistical reasoning and

gives the students introductory-level practical ability to choose, generate, and properly

interpret appropriate descriptive and inferential methods. In addition, the course in-

tends to help students gain an appreciation for the diverse applications of statistics and

its relevance to their lives and fields of study. The course does not assume any prior

knowledge in statistics and its only prerequisite is basic algebra.

The biology dataset comprises student data from instructors who taught with the

OLI Introduction to Biology course in the spring 2014 term (January–May, 2014). This

introductory course defines biology and its relationship to other sciences. The course

examines the overarching theories of life from biological research and also explore the

fundamental concepts and principles of the study of living organisms and their inter-

action with the environment. The course examines how life is organized into hierarch-

ical levels; how living organisms use and produce energy; how life grows, develops, and

reproduces; how life responds to the environment to maintain internal stability; and

how life evolves and adapts to the environment.

The engineering statics dataset comprises student data from instructors who taught

with the OLI Engineering Statics course in the fall 2011 term (August–December

2011). Statics is the study of methods for quantifying the forces between bodies. Forces

are responsible for maintaining balance and causing motion of bodies, or changes in

their shape. You encounter a great number and variety of examples of forces every day,

such as when you press a button, turn a doorknob, or run your hands through your

hair. Motion and changes in shape are critical to the functionality of man-made objects

as well as objects the nature. This course uses algebra and trigonometry and is suitable

for use with either calculus- or non-calculus-based academic statics courses. Comple-

tion of a beginning physics course is helpful for success in statics, but not required.

Many key physics concepts are included in this course.
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The psychology data set comprises student data from instructors who taught with the

OLI Introduction to Psychology course in the spring 2013 term (January–May 2013).

This course offers students an engaging introduction to the essential topics in psych-

ology. Throughout this study of human behavior and the mind, you will gain insight

into the history of the field of psychology, as well as explore current theories and issues

in areas such as cognition, motivation, and wellness. The importance of scientific

methods and principles of research design is emphasized throughout this course and

presented in a way that will enrich your study of individuals as thinking, feeling, and

social beings.

From each dataset, the transactions with KCs classified as “Good” were selected and

exported. Each transaction contained information on anonymous student id, KC name,

attempt number, and predicted error rate and additional information that were not

used in this analysis.

A Java program was written to extract information from each student and KC com-

bination how many attempts were necessary to achieve mastery for that KC (i.e. iden-

tify the first attempt where the predicted error rate became lower than the mastery

threshold of 20% (the amount of error allowed in the prediction of mastery), the default

value set in DataShop) and whether the student reached mastery or not for each KC.

According to DataShop documentation, the 20% threshold comes from Bloom (1968),

where he found that 20% of students were already attaining mastery levels in their

learning without improved learning techniques (Koedinger et al., 2010). This informa-

tion was subsequently used to make comparisons of descriptive statistics and conduct

two-sample t-tests and ANOVA (ANalysis Of VARiance) tests where appropriate.

Results
Statistics course

For the statistics course, see Table 1 for a summary, the mean number of attempts to

reach mastery over all 45 good KCs was 4.4 with a standard deviation of 4.0 (n =

13,411). We have one outlier at 16.6. This is the KC “pvalueinterp”. The second highest

at 9.9 is “hyptest-logic”. The KC “pvalueinterp” is the skill “Interpreting p-value” and

“hyptest-logic” is “Logic of hypothesis testing.” Questions related to these two KCs ap-

pear extensively in the Inference unit of the Probability & Statistics course. In particu-

lar, the “pvalueinterp” skill involves interpreting p-value results from various types of

statistical tests from a s-test for the population mean to chi-square tests. It could be

that interpreting the p-value is not a generalizable skill across different contexts but ra-

ther is multiple skills and/or requires more practice than less complex skills. The same

Table 1 Statistics course data summary for the 2014 course

Number of Students 1562

Total Number of Transactions 839,913

Knowledge Component Model intro_stats-3_6

Other knowledge components in
intro_stats-3_6 (of 107)

Low and flat: 1, No learning: 40, Still high: 12,
Too little data: 9

Good knowledge components 45 (out of 107), 42%

Transactions involving Good KCs 286,082
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may be true for “hyptest-logic” in that the process of hypothesis testing for different

statistical tests may be multiple skills that requires additional practice than less com-

plex skills.

If we reduce the mastery limit to 10% and use the same 45 KCs we get a slight in-

crease, with a mean of 5.0 and a standard deviation of 3.7 (n = 5196). We still have one

outlier at 15.1 which is still the KC “pvalueinterp”. The second highest at 10.7 is “prob-

tools” (Probability tools) and 10.4 is “samplespace” (Identifying sample space). The pre-

viously second highest “hyptest-logic” is now at 5.8.

We can divide the students into students attending two-year colleges and four-year

colleges and their means and standard deviations are shown in Table 2. As expected

the mean is lower for the four year colleges.

A Welch Two Sample t-test on these two groups gives t = 11.735, df = 3096.8, p-value

< 2.2e-16, 95% confidence interval: 1.0–1.4. If we just compare the mean values for each

KC, we get in a Two Sample t-test, t = 2.2705, df = 87, p-value < 0.013, with mean

values 6.1 for two year colleges and 4.1 for four year colleges.

A Welch Two Sample t-test gives a similar p-value: (t = 2.2523, df = 56.966), p-value

< 0.014.

We have, besides “pvalueinterp” at 36 and “hyptest-logic” at 17, three high values for

the two-year colleges. These are the KCs “ztestcond” (Conditions of z-test and t-test),

“translate-probdist” (Application of probability distribution) and “probtools” (Probabil-

ity tools). The KC related to identifying conditions for when to use a z-test and t-test is

the first major topic in the Inference section of the OLI Probability & Statistics course.

Students who have had no prior experience with statistics, which is often the case at

two-year colleges, tend to struggle when in the first part of the Inference unit. Also,

two-year college students tend to have less background knowledge in that area so it is

not surprising that two of the outliers are related to probability topics.

As the means are important for the further discussion, we will not include the two

outliers in the analysis below.

Another way to divide the colleges is to use “Carnegie Classification of Institutions of

Higher Education” (2005). This classifies American colleges and universities into one of

31 groups. For our purpose we need fewer groups and preferably a sorting order.

Therefore, we mapped the 23 participating colleges into one of four primary categories:

Associate’s, Baccalaureate, Master’s and Doctoral colleges/universities. One of the par-

ticipating colleges was Canadian and was classified as a Doctoral university based on

information on the number of graduated Ph.D. students on their web page.

In Tables 3 and 4 we can see that the mean drops as expected between Associate’s,

Baccalaureate/Master’s and Doctoral colleges. The similarities between the Baccalaur-

eate and the Master’s college students may be surprising, but it may be that the student

populations at master’s-degree granting institutions are similar to the student popula-

tions at baccalaureate-degree granting institutions in terms of prior knowledge and

Table 2 Mean number of attempts for two and four year colleges

College type Mean # attempts to reach mastery Standard deviation N

Two year 5.4 4.7 2388

Four year 4.2 3.8 11,023
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learning in math and statistics making these two classifications indistinguishable from

one another in terms of student performance on these skills.

An ANOVA followed by a Tukey multiple comparisons of means at 95% family-wise

confidence level comparing the three different college levels (Associate’s, Baccalaureate/

Master’s and Doctoral) confirms that the mean differences of number of attempts

needed to reach mastery are statistically significant (p < 0.001) among all three condi-

tions. The confidence intervals for the differences are shown in Table 5.

There is also an instance of the same course from 2015 with 781 students. There are

some differences between the course instances resulting in only 39 Good KCs for the

2015 data compared to 45 Good KCs for the 2014 data. The primary change between

the 2014 and 2015 instance is that in the latter additional checkpoint (summative as-

sessment) questions were added to allow for question pools and to address deficiencies

in number of questions per skill. While the OLI model equally weights the formative

and summative questions, the summative questions tend to be more difficult and carry

higher importance in terms of a student’s grade. Using the same set of good KCs as in

the analyses above (which includes 12 No learning and 4 Still high in the 2015 dataset)

we get a mean of 4.9, standard deviation of 4.5 (N = 6212). This is 10% higher than the

2014 dataset, but may be explained by the inclusion of more difficult checkpoint ques-

tions. The 2015 set contains the same outliers as the 2014 set.

If we look only at the good KCs in the 2015 dataset, the number of good KCs drops

to 39, (see Table 6). The mean is even higher at 6.2 with a standard deviation of 5.3

(N = 5553). In this dataset “pvalueinterp” and “hyptest-logic” did not even make it into

the good KCs. Among the highest that did are at “probtools” as usual, but the three

next ones are new: “apply_probability_rules_skill”, “estimater” and “onevstwosided”.

However, all four are between 10.7 and 12.2.

Comparing the median number of questions per KC in the two statistics datasets (see

Table 7) we can see that the median number of problems per KC increased from 5 to 8

across all 107 KCs from 2014 to 2015. For the Good KCs, the median number of prob-

lems increased from 5 to 9. The median for the Still high KCs remained relatively flat

Table 3 Mean number of attempts for associate’s, baccalaureate, master’s and doctoral colleges
with two troublesome KCs removed

Classification Mean Std

Associate’s 5.2 3.8

Baccalaureate 4.3 3.2

Master’s 4.3 2.9

Doctoral 3.8 2.8

Table 4 Mean number of attempts for Associate’s, Baccalaureate, Master’s and Doctoral colleges
with mastery limit set at 10% and the two (20%) troublesome KCs removed

Classification Mean Std N

Associates 5.7 3.6 870

Baccalaureate 5.1 3.7 623

Masters 5.3 3.2 724

Doctoral 4.6 3.3 2935

Bälter et al. Smart Learning Environments  (2018) 5:15 Page 10 of 19



near 6 problems. The “No learning” median increased from 1 to 4.5, but was still half

that for the median of the Good KCs indicating these KCs need additional questions.

Biology course

For the Biology course, see Table 8 for a summary, the mean was 3.1 with a standard devi-

ation of 3.6 (N = 6211). There is an outlier named c33 which is a compound of the KCs:

_u3_cell_function_explain_somatic_gametes_diff_skill,

_u3_chromosome_structure_describe_per_cell_cycle_skill and.

_u3_chromosomes_nbr_and_structure_per_type_skill. Joining KCs like this might be

a good idea to reduce the number of necessary test opportunities, but in this particular

case something might have gone wrong and a course designer should take a closer look

at this KC. Removing that outlier results in a mean of 2.8 and a standard deviation of

3.1 (N = 5980).

In the Biology course, all students came from the same university, which rule out

subdivisions. However, there are several knowledge models available that vary the num-

ber of estimated KCs and if we use Model1 with 50 good KCs, we get a mean of 2.9

and a standard deviation of 2.1. There are no outliers for Model1. As expected, the

number of attempts needed per KC drops when the number of KCs increase. However,

the total number of attempts to reach mastery increase from 6211 to 12,089, that is, in

this case when the number of KCs increased by a factor 2 (from 25), so did the number

of attempts necessary to reach mastery.

Engineering statics course

For the Engineering Statics course, see Table 9 for a summary, the mean was 5.3 with a

standard deviation of 4.6 (N = 2152). There is an outlier with 14.4 attempts on average

“couple_represents_net_zero_force”. Removing that outlier results in a mean of 4.6 with

a standard deviation of 4.0 (N = 2014).

If we reduce the mastery limit to 10% in the Engineering Statics course, with the

same outlier removed, the mean increases to 8.1 with a standard deviation of 5.0 (N =

Table 5 Mean differences between Associate’s, Baccalaureate, Master’s and Doctoral colleges and
confidence intervals

College level Mean difference Lower bound Upper bound

Doctoral-Associates −1.4 − 1.6 − 1.2

Baccalaureate/Master’s-Doctoral −0.8 − 1.0 − 0.5

Baccalaureate/Master’s-Associates 0.6 0.4 0.8

Table 6 Statistics course data summary for the 2015 course

Number of Students 781

Total Number of Transactions 643,158

Knowledge Component Model intro_stats-3_6

Other knowledge components in
intro_stats-3_6 (of 107)

Low and flat: 1, No learning: 56, Still high: 7,
Too little data: 4

Good knowledge components 39 (out of 107), 36%

Transactions involving Good KCs 231,985
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948). Compared to the minimal differences in other courses, this course is deviating

from the pattern. One explanation is that it is a more advanced course. In contrast to

the other courses, it has recommended (not required) prerequisites which not all stu-

dents may have fulfilled, resulting in more practice problems needed to reach mastery

with the limit set to 10%.

Psychology course

Due to the size of the dataset, the Psychology course, see Table 10 for a summary, is di-

vided in three different datasets with no overlap of students to make it possible for the

server to compute the learning curves. We tried to use a supercomputer with 50GB of

memory to be able to include the entire set, but to no avail. Due to random differences

between students in these sets, the learning curves and classifications have minor dif-

ferences between the sets. We used the KCs classified as Good in the largest of these

three sets on the other two sets as well.

Table 7 Problems per KC for the 2014 and 2015 Statistics courses

KC Classification Spring 2014 Fall 2015

Good N = 45
Median: 5
Mean: 7.04
Range: 2–38

N = 39
Median: 9
Mean: 10.21
Range: 3–36

Low and flat N = 1
4 KCs

N = 1
4 KCs

Still high N = 12
Median: 6.5
Mean: 8.42
Range: 3–17

N = 7
Median: 6
Mean: 14.43
Range: 5–47

No learning N = 40
Median: 5.5
Mean: 7.15
Range: 1–39

N = 56
Median: 8
Mean: 9.23
Range: 3–52

Too little data N = 9
Median: 1
Mean: 1.22
Range: 1–2

N = 4Median: 4.5
Mean: 4.25
Range: 2–6

TOTAL N = 107
Median: 5
Mean: 6.72
Range: 1–39

N = 107
Median: 8
Mean: 9.69
Range: 2–52

Table 8 Biology course data summary

Number of Students 481

Total Number of Transactions 418,344

Knowledge Component Models Model1_clst75_nm_nmfC10 and Model1

Other knowledge components in
Model1_clst75_nm_nmfC10 (of 72)

Low and flat: 10, No learning: 32, Still high: 5, Too
little data: 0

Other knowledge components in Model1 (of 178) Low and flat: 29, No learning: 44, Still high: 3, Too
little data: 52

Good knowledge components 25 (out of 72), 35% and 50 (out of 178), 28%

Transactions involving Good KCs 125,173 and 124,935
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For the Psychology course the mean was 3.9 with a standard deviation of 3.9 (N =

32,355). There is an outlier “physical_psychological_changes_adulthood” at 16.9. Remov-

ing that outlier results in a mean of 3.7 with a standard deviation of 3.5 (N = 31,907).

For this course we also have access to results on the final exam. The Pearson’s

product-moment correlation between the students’ number of attempts and the result

of the final exam is shown in Table 11. All correlations are weak, but in the expected

directions: the fewer attempts needed to master all skills (lower mean and median), the

better result on the final exam. Also, the more KCs mastered, the better result on the

final exam and the lower standard deviation, the better result. A scatterplot over at-

tempts vs. final test score is illustrated in Fig. 2.

If we look only at the most difficult KCs (ten highest mean number of attempts) the

correlation is somewhat stronger (mean − 0.36, median − 0.38) which is confirmed in

the scatterplot in Fig. 3.

All these students had finished the course in that sense they have a score on the final

exam. If the KCs that require a high number of attempts had been unevenly distributed,

for example most in the beginning, and low achieving (in terms of score on final exam)

students stopped answering the online questions, that could explain the correlations

above. However, as can be seen in Fig. 4, the distribution of high demanding and low

demanding KCs is pretty even over the course.

Discussion
We have performed a study of the number of opportunities necessary to reach mastery

for four different college level courses. Although there are differences, these differences

are small between KCs, student groups, and colleges. So, how many opportunities are

enough to predict student mastery?

Ideally, an online course should never run out of questions for the learners as this

would prevent some learners from mastering certain skills. However, speaking infor-

mally with students about this, there is an acceptance for new systems to not be perfect

Table 9 Engineering statics course data summary

Number of Students 148

Total Number of Transactions 215,412

Knowledge Component Model F2011

Other knowledge components in F2011 Low and flat: 11, No learning: 24, Still high:
2, Too little data: 16

Good knowledge components 26 (out of 79), 33%

Transactions involving Good KCs 122,731

Table 10 Psychology course data summary

Number of Students 841

Total Number of Transactions 1,286,426

Knowledge Component Model psychology-1.4

Other knowledge components in psychology-1.4 Low and flat: 16, No learning: 76, Still high: 3,
Too little data: 36

Good knowledge components 72 (out of 226), 32% (in the largest set)

Transactions involving Good KCs 466,289
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in this sense as long as this only occur occasionally. This acceptance is vital, because

creating validated questions is time consuming, we estimate this to on average, one

hour per problem (Piasentin, 2010), and this should be multiplied with the number of

KCs for a course, making every extra question resource demanding. Once the course is

up and running, troublesome KCs can be identified and extra questions for these can

be added, but for new courses a rule of thumb could be helpful to get the course good

enough without draining resources.

From Table 12 which summarize our findings we can see that the mean number of

attempts to reach mastery is somewhere between 3 and 6 (with two exceptions dis-

cussed below), with a standard deviation between 3 and 5. These histograms generally

follow a lognormal distribution in that the data skews towards very large positive values

(Damodaran, n.d.). However, since the mean and standard deviation of the sample are

available we can estimate μ* (log mean) and σ* (log standard deviation) of the lognor-

mal distribution. For the mean, μ* equals x-bar / √ω and σ* equals exp.(√(log(ω)) where
ω equals 1 + (s / x-bar)2 (Limpert et al., 2001). The log mean plus two standard devi-

ation covers 98% of the students’ needs for opportunities. In the end, it is up to the

course designers to decide what the coverage should be and how much resources can

be used for questions, but as a rule of thumb: around seven questions. This can be

Table 11 Correlations between number of attempts and final exam score

Final exam score vs. Correlation 95% confidence interval low 95% confidence interval high p-value

Mean −0.34 −0.40 − 0.27 < 2.2e-16

Median −0.35 − 0.41 − 0.28 < 2.2e-16

Standard deviation − 0.23 − 0.30 − 0.16 7.968e-11

Number of KCs mastered 0.35 0.28 0.41 < 2.2e-16

Fig. 2 Scatterplot over the mean number of attempts and final test score
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Fig. 3 Scatterplot over the mean for the top ten KCs and final test score

Fig. 4 Distribution of mean number of attempts over the course
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compared to the median eight questions available per KC across all 107 KCs in the

2015 Statistics course and a median of nine questions per KC for those classified as

“Good.” In contrast, some of the problematic KCs showed fewer opportunities such as

the 7 out of 107 KCs that were classified as “Still high” (median 6 opportunities per

KC) and four others as “Too little data” (median 4.5 opportunities per KC).

Where we have identified outliers we have removed them. The reason is that identify-

ing outliers in this manner is a way of identifying parts of a course that need an over-

haul. We do not believe that it is optimal for the learners to normally reach mastery in

4–5 attempts and suddenly need 15, and these are the averages, for some learners these

numbers are much higher.

Despite all the manipulations with different students, courses, number of KCs and

mastery thresholds, the mean values in number of attempts to reach mastery varied

very little except in one course, the Engineering Statics course. While the effects of the

mean for the statistics course increased less than an attempt when the level of mastery

was halved from 20% to 10%, on the Engineering Statics course the mean almost dou-

bled. We can therefore not state that the number of attempts is independent of the

mastery threshold for an advanced course that has recommended prerequisites.

As expected, the number of attempts needed drops when the number of KCs in-

crease. In this case when the number of KCs increased by a factor of two, so did the

number of attempts necessary to reach mastery. More KCs means more questions for

students to answer, but the questions are “easier” for students to master because the

concept being covered in each question is smaller in scope. If we strive for efficiency in

our courses, we should therefore also strive for a balance between the number of KCs

and number of questions we pose. Fewer KCs results in more questions necessary on

the same (aggregated) skill, while more KCs lead to more questions in total. As we

Table 12 Comparison between mean, standard deviation and log mean + 2SD for all subgroups

Course: subgroup Mean Standard
deviation

μ* (log
mean)

σ*(log standard
deviation)

Log Mean + 2
Log SD

Statistics: Associate’s colleges 5.2 3.8 4.2 1.5 7.2

Statistics: Baccalaureate colleges 4.3 3.2 3.4 1.5 6.4

Statistics: Master’s colleges 4.3 2.9 3.6 1.5 6.6

Statistics: Doctoral colleges 3.8 2.8 3.1 1.5 6.1

Statistics: Associate’s colleges 10%
mastery

5.7 3.6 4.8 1.5 7.8

Statistics: Baccalaureate colleges
10% mastery

5.1 3.7 4.1 1.5 7.1

Statistics: Master’s colleges 10%
mastery

5.3 3.2 4.5 1.4 7.3

Statistics: Doctoral colleges 10%
mastery

4.6 3.3 3.7 1.5 6.7

Statistics 2015 6.2 5.3 4.7 1.6 8.0

Biology: 50 KCs 2.9 2.1 2.3 1.5 5.3

Biology: 25 KCs 2.8 3.1 1.9 1.8 5.5

Engineering Statics 4.6 4.0 3.5 1.6 6.8

Engineering Statics 10% 8.1 5.0 6.9 1.5 9.8

Psychology 3.7 3.5 2.7 1.7 6.1

μ* (log mean)
σ* (log standard deviation)
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could see in this example, too few KCs may also lead to too complex questions causing

outliers among the questions.

In the Psychology course we were able to compare the number of attempts needed to

achieve mastery with the results on a written final exam. The statistical analyses point

in the same direction: the number of attempts is indicative of the students’ learning

state (as measured by the exam).

A limitation of this study is the somewhat arbitrary threshold for mastery. As the true

learning state of a student is not possible to determine we are confined to indirect

methods such as asking questions.

Could this be generalized to other courses? Possibly, as the span of courses in this study

cover four different subjects with rather small differences, with the one exception men-

tioned above. However, out of necessity all courses in this study are OLI courses, and the

lack of differences might be an effect of the methods to create and implement OLI courses.

Could this be generalized to other students? All students in this study are adults so

the validity of this study for K-12 education is limited. However, the differences be-

tween the different students groups we could extract (two vs four year colleges; Associ-

ate’s, Baccalaureate, Master’s and Doctoral colleges) are small. It would not be

surprising if a study on high school students would show similar results. However, such

studies must be done on courses intended for that age group, which the present OLI

courses are not, but we are investigating other possibilities to reach down in age.

Conclusions
The number of opportunities necessary to reach mastery on OLI courses differs very little

between the four different courses examined and also between different types of college

students. For other researchers and teachers who are developing online courses we would

recommend offering at least seven opportunities to test each skill, more if the course is

advanced and the prior knowledge among the students may be uneven. An upper limit is

a matter of resources, but these are better spent on identifying high demanding skills to

either add more opportunities there, or to understand why those specific skills are so

much more difficult to master and perhaps improve the instructions.

We have observed a natural linear relation between the number of KCs and number

of attempts necessary to reach mastery in total. However, this is only based on a single

course and more studies are needed to validate this.

The algorithms for classifying learning curves could be refined to detect outliers

among the KCs. We believe KCs with a high number of opportunities needed to master

them should be further investigated to understand why those particular skills are so dif-

ficult to master. It might be something wrong with the instruction. Even if there is

nothing wrong, those skills have the largest potential of improvement in our goal to

make learning as efficient as possible.
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