
 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

Abstract –The demand for information systems security
education has never been higher, while the availability of
high-quality information systems security instruction and of
well-qualified instructors are both extremely limited. Meeting
the demand requires converting teaching from an individual
activity to a community-based research activity. As a result,
Carnegie Mellon University’s Open Learning Initiative and
the Software Engineering Institute’s CERT® Program have
collaborated in the development of an online secure coding
module that exemplifies how to capture expert content, ensure
high-quality learning, and scale to meet rapidly growing
demand. This paper describes this effort and how high-quality
information systems security instruction can be scaled to meet
existing and projected demand.

Index terms – Information Systems Security, Secure Coding,
Distance Education, Education, Best Practices.

I. INTRODUCTION

Current and projected demands for software developers
with skills in creating secure software systems
demonstrate that, among other things, there exists a clear
need for additional capacity in secure coding education.
The National Strategy to Secure Cyberspace contains a
specific priority to create a national cyberspace awareness
and training program [1]. That priority recognizes two of
the barriers to the improvement of cybersecurity as “a
lack of familiarity, knowledge, and understanding of the
issues” and “an inability to find sufficient numbers of
adequately trained…personnel to create and manage
secure systems” [1]. One of the National Strategy’s major
initiatives is to “foster adequate training and education
programs to support the Nation’s cybersecurity needs”
[1].

Increased capacity can be addressed, in part, by an
increase in the productivity and efficiency of learners, that
is, moving ever more learners ever more rapidly through
course materials. However, the need for throughput is
matched by the need for quality. Students must be able to
apply what they have learned and be able to learn new
things. Effective secure coding requires a balance
between high-level theory, detailed programming-
language expertise, and the ability to apply both in the
context of developing secure software. Educating
software developers properly requires great expertise.

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

While this expertise does exist, it tends to reside in
individuals and organizations that are isolated from one
another. These pockets of excellence, effective within
their spheres, do not scale to meet the national demand.
Furthermore, their isolation often means that even when
practitioners do achieve significant improvement in the
effectiveness of their instruction, this success is not
shared or systematized.

Just as contemporary models for software development
have rejected the isolated “hero programmer” in favor of
a team- and process-driven engineering approach, current
best practices in educational technology and research in
learning science point away from the solo educator. In
the words of Herbert Simon, “Improvement in post-
secondary education will require converting teaching
from a ‘solo sport’ to a community based research
activity.”1

II. BACKGROUND

Carnegie Mellon University’s (CMU) Open Learning
Initiative (OLI) builds learning environments that are
dynamic, flexible, and responsive. Design and
implementation are data driven because all learning
activities in OLI courses are, with the student’s
permission, digitally recorded in considerable detail. This
enables the system to adapt to what the learner is doing
and, over time, informs course refinements and overall
system improvements. OLI constitutes a new approach to
course development, evaluation, and improvement
methodologies. It offers specific web-based learning
interventions that can improve both the productivity and
the quality of instruction. Using intelligent tutoring
systems, virtual laboratories, simulations, and frequent
opportunities for formative assessment with expert
feedback, OLI takes full advantage of advances in the
cognitive and learning sciences.

OLI is an open educational resources project that began in
2002 with a grant from The William and Flora Hewlett
Foundation. Like many open educational resources
projects, OLI makes its courses openly and freely
available. OLI courses are much more than collections of

1 Remarks made at a lecture given at Carnegie Mellon
University, April 1996.

An Online Learning Approach to Information
Systems Security Education

Norman Bier, Marsha Lovett, and Robert Seacord, Carnegie Mellon University

 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

material created by individual faculty to support
traditional instruction. Rather, OLI strives to create
courses that enact instruction; these courses provide
structure, information, activities, and feedback, all
arranged so that students can learn, even if they do not
have the benefit of an instructor or classmates. The same
features that can effectively support an independent
learner can also be leveraged to support classroom
instruction; instructors and course authors have
successfully taught OLI courses, and current OLI research
efforts continue to find ways to improve the experience
and outcomes for students and instructors using a
blended-learning approach.

CERT is part of the Software Engineering Institute (SEI),
a federally funded research and development center at
CMU in Pittsburgh, Pennsylvania. Among other security-
related activities, CERT regularly analyzes software
vulnerability reports and assesses the risk to the Internet
and other critical infrastructure elements. Researchers at
CERT have observed, through an analysis of thousands of
vulnerability reports, that most vulnerabilities stem from a
relatively small number of common programming errors
[2]. By identifying insecure coding practices and
developing secure alternatives, software developers can
take practical steps to eliminate known code-related
vulnerabilities.

As part of the CERT® Secure Coding Initiative,2 CERT
identifies common programming errors that lead to
software vulnerabilities. Then it establishes and publishes
well-vetted secure coding standards that mitigate known
problems. Members of the Secure Coding team educate
students and professionals by working with individual
developers and software development organizations. The
objective is to reduce the number of vulnerabilities being
deployed to a level where they can be successfully
managed by existing vulnerability handling teams.

The remainder of this paper describes the course design
approach followed by OLI, how this approach was
applied to the creation of a secure coding course module,
and a pilot offering of the module in an undergraduate
computer science class at CMU. We also describe a
proposal for community-based information systems
security instruction.

III. COURSE DESIGN APPROACH

The traditional process of having every instructor design
his or her own course is inefficient; what may be less
obvious is that the traditional course design and delivery
process is often ineffective. Much is known about student
learning and effective course design, but translating
scientific results from the learning sciences into effective

2 https://www.cert.org/secure-coding/

instruction requires significant knowledge, expertise, and
effort. Such an effort by one faculty member for a single
class is rare and, even when accomplished, typically has
an impact on comparatively few students. In contrast,
each OLI course is designed by a multidisciplinary team
including a learning scientist, faculty content expert(s),
human-computer interaction expert, and software
engineer, so that these different areas of expertise can be
brought to bear in the course design. The team's goal is to
create and refine the course so that it can be effectively
used by many instructors and learners. This type of
dynamic, team-based course development process is an
important characteristic of the open educational resource
(OER) approach to course development [14].

OLI course development begins with a study of the
teaching and learning challenges in the domain under
development. This study includes literature reviews,
reviews of existing artifacts of student learning, classroom
observations, lab studies, or classroom-based studies. The
design team then articulates a set of student-centered,
measurable learning objectives—descriptions of what
students should be able to do by the end of the course.
These learning objectives then guide and inform the
design of instructional activities and assessments that will
support students in achieving those objectives. That is, the
course designers deliberately create instructional activities
and assessments that are well aligned with each other and
with the articulated learning objectives, producing more
effective learning experiences (see Figure 1).

Figure 1. Course design triangle.

Interestingly, in OLI courses, the distinction between
instructional activities and assessments is blurred because
instructional activities not only support learning but also
offer feedback on students’ knowledge and skills (to both
the student and the instructor), and assessment activities
not only evaluate students’ developing knowledge and
skills but also offer opportunities to learn. Consequently,
one of the most powerful features of OLI learning
environments is the ongoing presence of embedded
formative assessment and feedback throughout the
learning process.

Instructional Activities

Learning Objectives

Assessments

Tasks that
provide
feedback on
students’
knowledge and
skills

Descriptions of
what students
should be able to
do at the end of
the course

Contexts and
activities that foster
students’ active
learning

 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

Instructional activities and assessments in OLI capitalize
on the computer’s capability to display digital images and
simulations, promote students’ interactive engagement,
and collect data on students’ interactions with the system.
In particular, OLI benefits from inheriting some of the
best work done in the area of computer-based tutoring by
CMU and University of Pittsburgh faculty. Many OLI
courses feature Cognitive Tutors [3] and mini-tutors that
give students feedback within the problem-solving
context. A Cognitive Tutor is a computerized learning
environment whose design is based on cognitive
principles and whose interaction with students is modeled
after that of a human tutor, that is, making comments
when the student errs, answering questions about what to
do next, and maintaining a low profile when the student is
performing well. This approach differs from traditional
computer-aided instruction in that it offers context-
specific assistance to students throughout the problem-
solving process rather than only giving feedback on the
final answer. Consequently, a hallmark of all OLI courses
is the frequent opportunity for students to apply what they
are learning through problem solving and receive
individualized feedback on their work.

OLI’s feedback to students includes corrections,
suggestions, and cues that are tailored to the individual’s
current performance and that encourage the student to
revise and refine their performance. Many learning
studies have shown that students’ learning improves and
understanding deepens when they receive timely and
targeted feedback on their work [4, 5, 6, 7]. The best
learning outcomes occur when feedback comes as soon as
possible after the student’s response but not before the
student is ready to revise his or her understanding.

OLI also offers feedback to instructors who are teaching
with OLI in blended mode, that is, where the instructor
assigns students to work through a segment of the OLI
course and also has some face-to-face class time. Such
instructors can use a tool called the Instructor’s Learning
Dashboard to see, at a glance, where students are
succeeding and where they are struggling. This tool works
by collecting and analyzing data from students’
interactions in the course to estimate the students’ current
knowledge state for each learning objective. With this
information in hand, an instructor can identify what
material requires significant remediation versus what can
be reviewed rather quickly, thereby adapting his or her
instruction to students’ needs.

The combination of this rich feedback to instructors and
the context-sensitive feedback given to students has
enabled OLI courses to show significantly greater
learning gains compared to traditional courses [8, 9, 10].
For example, in one series of studies, students learning
with OLI-Statistics completed a full semester’s worth of

material in half the time and achieved greater learning
gains than students in a traditional class [7].

Beyond the immediate benefit to students and instructors,
OLI also leverages system-generated student performance
data to provide feedback to the course development team,
who can then use this information to enact evidence-
based, iterative improvements to the course materials.
Similar types of information are also provided to the
learning science community, contributing to the
development and further refining of new knowledge about
human learning. In both of these contexts, the open
approach is an essential component of improving the
quality of education. These feedback loops are dependent
upon courses being used by a large number of students
with varied background knowledge, relevant skills and
future goals. This large population of learners is one
benefit that open access provides, and is one reason that
the OER approach is able to improve the quality and
effectiveness of courses [14].

In sum, OLI is much more than a technology. It is a set of
strategies for course design, development, delivery, and
evaluation. OLI development teams use learning science
research results to inform course design and use learning
science research methods both to unpack the cognitive
tasks and to design the instructional interventions.
Moreover, OLI courses hold the collective memory of
what works and does not work, so time and resources are
spent on improvements rather than on reinventing existing
successes or failures. That is, OLI collects data to provide
feedback loops to students, instructors, and course design
teams for continuous evidence-based improvement.

IV. DESIGNING AN OLI COURSE FOR SECURE CODING

The design team began the task of creating an OLI course
in secure coding by selecting the topic of integral security,
that is, security related to the use of integers in C
language programs. Integers are ubiquitous in C language
programs, but even seasoned software development
professionals have a poor understanding of their behavior.
Consequently, vulnerabilities resulting from an incorrect
understanding of integral behavior in C language are
commonplace. Material for the course module on integer
security was derived from the book Secure Coding in C
and C++ [10] and developed by a team of software
security and C language programming experts, including
the current chair of the ANSI-C Standards Committee
(now INCITS PL22.11).

The design team then proceeded to articulate a set of
learning objectives to specify what students should be
able to do by the end of this course module. Note that,
beyond being stated in student-centered terms, these
learning objectives specify action-oriented, measurable
outcomes. This helped the course design team ensure that

 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

the module’s instructional activities and assessments were
designed to help students achieve the module’s objectives.
The learning objectives for the module are:

• Explain and predict how integer values are
represented for a given implementation.

• Reason about type ranges.
• Identify error conditions.
• Select appropriate type for a given situation.
• Predict how and when conversions are performed and

describe their pitfalls.
• Understand integer types, representations, and

conversions.
• Recognize when implicit conversions and truncation

occur as a result of assignment.
• Programmatically detect erroneous conditions for

assignment, addition, subtraction, multiplication,
division, and left and right shift.

• Identify security flaws and vulnerabilities resulting
from erroneous integer operations.

• Explain how vulnerabilities from erroneous integer
operations can be exploited.

• Identify applicable mitigation strategies, evaluate
candidate mitigation strategies, and select the most
appropriate mitigation strategy (or strategies) for a
given context.

• Apply mitigation strategies to reduce the introduction
of errors into new code or repair security flaws in
existing code.

To develop mastery of the skills required by these
learning objectives, students need goal-directed practice
and targeted feedback on integrating the component skills
in progressively more realistic contexts. Consequently,
multiple activities were designed to support each learning
objective, starting with more basic comprehension checks
and progressing to more complex, contextualized
problems.

A sample of an advanced activity designed to support the
learning objective to “programmatically detect erroneous
conditions for division” is the following:

What is wrong with the following test for checking overflow
in the signed multiplication of a and b?

signed int a = /* some value */;
signed int b = /* some value */;

if ((a > 0 && b > 0 && a > INT_MAX / b) ||
 (a > 0 && b < 0 && a > INT_MIN / b) ||
 (a < 0 && b > 0 && a < INT_MIN / b) ||
 (a < 0 && b < 0 && a < INT_MAX / b)) {
 /* handle error condition. */
}

A. A false negative could occur (that is, a multiplication that
overflows can pass this check).

B. In the worst case, four division operations are required.

C. Undefined behavior can occur as the result of a division
operation.

D. A false positive could occur (that is, a valid
multiplication could be flagged as an error).

If the student is unsure where the problem exists in this
code, the student can request the following hint:

Consider the case where a > 0 and b == -1.

This focuses the student’s attention on a particular range
of values. If this is insufficient, the student can request
further guidance:

What is the result of INT_MIN / -1?

Here the student is asked to consider the particular case
where the dividend is INT_MIN and the divisor is -1. If
this hint is still insufficient, a third and final level of
guidance is available:

What is the behavior if the quotient of a/b is not
representable?

Feedback is also provided for both correct and incorrect
responses. For example, if the student incorrectly selects
“B. In the worst case, four division operations are
required,” the student will receive the following feedback:

Incorrect. Because of the short-circuit evaluation of the &&
operator, only one division operation is required.

On the other hand, if the student selects the correct
answer, he or she still receives feedback to ensure this
answer was selected for the correct reason and to
reinforce the material:

Correct! If a > 0 and b == -1, the test a > INT_MIN /
b results in undefined behavior when using two's
complement representation because the result of INT_MIN /
-1 is not representable as a signed int.

A demo of the Secure Coding in C course module can be
publicly accessed at https://oli.web.cmu.edu/ using the
course key: scode-demo.

V. SECURE CODING EDUCATION AT CARNEGIE MELLON
UNIVERSITY

The National Security Agency designated CMU as a
Center of Academic Excellence in Information Assurance
Education in 2001 in recognition of its significant
contribution to meeting the national demand for
information assurance education, developing a growing
number of professionals with information assurance

https://oli.web.cmu.edu/

 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

expertise in various disciplines, and, ultimately,
protecting the national information infrastructure. Many
university departments participate in activities related to
information assurance and computer security.

For example, the Computer Science Department at CMU
has offered CS 15-392 “Secure Programming” as a
computer science elective since 2007. The DHS-
sponsored Software Assurance Curriculum Project
includes this course as an example of an undergraduate
course in software assurance that could be offered in
conjunction with a variety of programs [11]. CMU’s
Information Networking Institute has also offered 14-735
“Secure Software Engineering” in its Master of Science in
Information Technology Information Security Track
(MSIT-IS). Both courses partially map to the National
Training Standard for Information Systems Security
(INFOSEC) Professionals 4011 national training standard
[13]. The topic of “Integer Security” is a common module
to both these courses. As a result, the OLI course module
on integer security is appropriate to both.

VI. PILOT

An initial version of the OLI Integer Security module was
completed in January of 2011 and used during the 2011
spring semester offering of CS 15-392. The previous
semester’s offering of 14-735 served as a loose
comparison. The integer module used in the pilot consists
of 43 HTML pages and includes 27 instructional or
assessment activities.

Table 1. Student performance.

On average, the students reported taking 6 hours to
complete the module. System measures included3:

Average time engaging with course material/activities:
4.29 hours (Min: .57 hours, Max: 16 hours)
Average number of sessions per student: 3.85 sessions
Length of average session: 1.13 hours

In addition to time spent taking the online course, four 50-
minute class sessions were devoted to the material, less
than half the class time normally consumed by this topic.

During this pilot, 22 of 23 registered students worked on
the module, completing 92 percent of the assessments. On
average, the number of errors students made plus the
number of hints they requested per question—also called
average help needed—was 0.3, but the range of this
metric was 0 to 2.57. Overall, seven questions’ help
needed was greater than 0.75. We take this cutoff as a
good threshold to examine the results of the assessment to
determine if a question was deficient or if the students
simply required further instruction in this area. Overall
student error rates per problem are shown in Error!
Reference source not found. The green bar represents
the proportion of students who answered that question
correctly. The yellow bar represents the proportion of
students who requested a hint; and red bar represents the
proportion of students who answered the question
incorrectly.

A review of the question at the high end of the metric
determined that it was deficient and required rework. On
the other hand, the following question, which had 45
percent correct responses out of 22, showed no obvious
signs of deficiency:

The following function accepts three arguments:
elem_count, p_max, and p_current. The p_max
argument points to one past the last element of an array
object, and the p_current argument points to an element
in the same array object. The test_ptr function
determines if there are at least elem_count elements
following p_current in the array.

int test_ptr(size_t elem_count,
 int *p_max, int *p_current) {
 T subscript_diff = p_max - p_current;

3 Time is captured from start of a session (log-in) to the
last action of a session. This means for a student who
opens a page and spends 20 minutes reading, but takes no
subsequent system-captured action after reading, that 20
minutes would not be included in our total. This is a
possibility for 21% of sessions. To account for students
who open a window, leave their computer, then return
(potentially hours later) internal session gaps that are
larger than 60 minutes were filtered (these were rare—15
incidents, representing an additional 7.25 hours).

 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

 if ((p_max > p_current) &&
 (subscript_diff > elem_count)) {
 return 0;
 }
 return -1;
}

Which type T should be used?

A. unsigned int
B. int *
C. size_t
D. ptrdiff_t

The students who answered this question incorrectly all
chose ptrdiff_t, revealing a common misconception.
Indeed, seeing this reasonable error, the instructor
recognized the issue as a good candidate for in-class
discussion.

Figure 2. Learning curve.

Undergraduate computer science students who
participated in the pilot correctly answered 76 percent of
integer-related questions on the midterm. Graduate
students4 who spent significantly more class time
covering the material (480 minutes as opposed to 200
minutes) achieved the same results on the previous
semester’s final. It is expected that, with further
improvements to the online course material and the
corresponding in-class instruction, future course
deliveries will produce further learning improvement.
This is a further advantage of the online format in that it is
not necessary to reprint a text book to get a new set of
materials/content incorporated into the course.

VII. COMMUNITY-BASED INSTRUCTION

One goal of the OLI is to develop exemplars of high-
quality, online courses that support individual learners in
achieving the same learning goals as students enrolled in
similar courses at CMU. Although OLI courses were
originally designed to support individual learners,

4 The exam questions were not identical or matched for
difficulty—they were simply matched for content.

instructors inside and outside of CMU increasingly use
OLI courses to complement their instructor-led courses.
OLI courses can help instructors address the challenges of
the increasing variability in their students’ background
knowledge, relevant skills, and future goals.

In addition to OLI courses, CMU has also developed an
autograding system used to automate the evaluation of
student programming assignments [12]. The current
Autolab system was developed by Hunter Pitelka, David
Kosbie, and David O’Hallaron in 2010. It is hosted at
CMU and consists of a Linux front-end machine with an
8-Tbyte RAID array and 10 Linux back-end autograding
machines. The front end runs a Web server written in
Ruby on Rails, a MySQL database, a Tashi cluster
manager that manages virtual machines (VMs), and a
Tango daemon that provides the interface between the
Web server and Tashi. The back-end machines run KVM
virtual machines on behalf of the front end. The design
allows untrusted code to be run in network-isolated VMs
without (virtual) network cards.

Autograding has improved the quality of the learning
experience for students at CMU [12]. Labs are no longer
limited by the instructor’s ability to grade them, but rather
by imagination and cleverness in developing autograding
software. Autograding also expands the potential reach of
our labs beyond CMU. A hosted Autolab service could
provide autograding of a shared repository of labs to all of
the world’s universities.

The capacity of CERT and other organizations involved
in information systems security research, development,
and education to produce educational material is
extremely limited. This reflects Herbert Simon’s idea that
improvement in post-secondary education requires a
community-based research approach.5 OLI courses are
open and free, and any university, college, or other
learning institute can offer them as credit-earning courses,
as CMU is currently doing. The courses can be clearly
branded with the names of the contributing instructor(s)
and their organization, adding to the reputation of both.
By establishing a library of high-quality course content
and autograded labs with a scalable delivery platform, the
demand for high-quality information systems security
education can be satisfied.

VIII. CONCLUSIONS AND FUTURE PLANS

The Integer Security module presents a proof of concept
for developing an online course for secure coding using
the OLI approach to course development.

5 Remarks made at a lecture given at Carnegie Mellon
University, April 1996.

 Proceedings of the 15th Colloquium for Information Systems Security Education
 Fairborn, Ohio June 13-15, 2011

ISBN 1-933510-96-X/$15.00 2011 CISSE

We successfully provided students with material and
activities that support a clear set of learning activities,
while giving tailored hints and feedback. We also
demonstrated via a pilot study that the course is effective
in terms of students' performance results and time spent.
This pilot study has also provided insights into the aspects
of the course that are most effective and those that still
result in student difficulties and misconceptions. This
information will be used in the next iteration of course
development to refine existing materials and create
additional activities to target the skills and outcomes that
students failed to achieve.

We now have a procedure and a platform for building
other modules, further evaluating the effectiveness of this
approach, and incorporating other tools to support
students' learning of this material. Consequently, CERT
has begun development on a subsequent module on C
language pointers and will develop other modules based
on available resources.

Another goal is to incorporate an intelligent tutor that can
compile, analyze, execute (securely), and test code
submissions from students and provide timely,
substantive, and targeted feedback. This would allow for
the analysis of student submission using a variety of
automated analysis techniques, including static and
dynamic analysis, model checking, and traditional unit
testing. This goal may be accomplished by integrating
CMU’s autograder system with OLI and developing
autograded exercises for the secure coding course.

Beyond CMU, the Department of Computer Science at
Stevens Institute of Technology has also used the secure
integer module. Matt Bishop, from the Department of
Computer Science at the University of California, also
plans to use the integer module in his undergraduate
computer security course starting March 24, 2011. The
SEI is also using the course module in two course
deliveries to professional audiences in March 2011.

IX. ACKNOWLEDGEMENTS

Doug Gwyn, David Keaton, Philip Miller, David
Svoboda, and Tim Wilson all contributed to the
development of the secure coding integer module content.
Pennie Walters was responsible for technical editing of
the course module and Paul Ruggiero for technical editing
of this paper. Alexandra Drozd assisted in the course
implementation.

X. REFERENCES

[1] U.S. Department of Homeland Security (2003). The
National Strategy to Secure Cyberspace. U.S. Department
of Homeland Security.

[2] Seacord, R. C. (2005). Secure Coding in C and C++
(SEI Series in Software Engineering). Addison-Wesley
Professional.

[3] Anderson, J. R., Corbett, A. T., Koedinger, K. R., &
Pelletier, R. (1995). “Cognitive Tutors: Lessons Learned.”
Journal of the Learning Sciences 4: 167-207.

[4] Hattie, J., & Timperley, H. (2007). “The power of
feedback.” Review of Educational Research, 77(1), 81-
112.

[5] Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett,
M. C., & Norman, M. K. (2010). How Learning Works:
Seven Research-Based Principles for Smart Teaching.
San Francisco, CA: Jossey-Bass.

[6] National Research Council. (2001). Knowing What
Students Know: The Science and Design of Educational
Assessment. Washington, DC: National Academy Press.

[7] National Research Council. (2004). How People
Learn: Brain, Mind, Experience, and School. Expanded
Edition. Washington, DC: National Academy Press.

[8] Lovett, M., Meyer, O., & Thille, C. (2008). “The
Open Learning Initiative: Measuring the Effectiveness of
the OLI Statistics Course in Accelerating Student
Learning.” Journal of Interactive Media in Education.

[9] Schunn, C. D., & Patchan, M. (2009). An Evaluation
of Accelerated Learning in the CMU Open Learning
Initiative Course “Logic & Proofs.” Technical Report by
Learning Research and Development Center, University
of Pittsburgh.

[10] Steif, P. S., & Dollár, A. “Study of Usage Patterns
and Learning Gains in a Web-based Interactive Static
Course.” Journal of Engineering Education 98, 4 (2009):
321-333.

[11] Mead, Nancy R., Hilburn, Thomas B., & Linger,
Richard C. (2010). Software Assurance Curriculum
Project Volume II: Undergraduate Course Outlines
(CMU/SEI-2010-TR-019). http://www.cert.org/mswa/

[12] Milojičić, Dejan. “Autograding in the Cloud:
Interview with David O’Hallaron.” IEEE Internet
Computing Magazine January/February 2011 (Vol. 15,
No. 1): 9-12.

[13] NSTISSI-4011 - INFOSEC Professionals, National
Training Standard, 1994.

[14] Plotkin, Hal (2010). Free to Learn: An Open
Educational Resources Policy Development Guidebook
for Community College Governance Officials. San
Francisco, CA: Creative Commons.
http://wiki.creativecommons.org/Free_to_Learn_Guide

http://www.cert.org/mswa/

	I. Introduction
	II. Background
	An Online Learning Approach to Information Systems Security Education
	III. Course Design Approach
	IV. Designing an OLI Course for Secure Coding
	A. A false negative could occur (that is, a multiplication that overflows can pass this check).
	B. In the worst case, four division operations are required.
	C. Undefined behavior can occur as the result of a division operation.
	D. A false positive could occur (that is, a valid multiplication could be flagged as an error).

	V. Secure Coding Education at Carnegie Mellon University
	VI. Pilot
	VII. Community-based Instruction
	VIII. Conclusions and Future Plans
	IX. Acknowledgements
	X. References

