
The AProS Project: Strategic
Thinking & Computational Logic

WILFRIED SIEG, Carnegie Mellon University, Department of Philosophy,
Laboratory for Symbolic & Educational Computing.
E-mail: sieg@cmu.edu

Abstract

The paper discusses tools for teaching logic used in Logic & Proofs, a web-based introduction to modern logic that
has been taken by more than 1,300 students since the fall of 2003. The tools include a wide array of interactive
learning environments or cognitive mini-tutors; most important among them is the Carnegie Proof Lab. The Proof
Lab is a sophisticated interface for constructing natural deduction proofs and is central, as strategically guided
discovery of proofs is the distinctive focus of the course. My discussion makes explicit the broader intellectual
context, but also the pursuit of pedagogical goals and their experimental examination. The intellectual context
includes i) the theoretical background for the proof search algorithm AProS and its use for a dynamic Proof Tutor,
and ii) the programmatic expansion of the course to Computational Logic. (I recommend that the reader enter the
virtual classroom of Logic & Proofs: the interactive components just cannot be properly reflected in a narrative. It is
also very easy to download AProS and observe its ways of searching for proofs.)1

Keywords: introduction to logic, strategic thinking, automated proof search, dynamic proof tutor, Carnegie Proof

Lab, Open Learning Initiative (OLI), intercalation calculus, natural deduction proof.

Introduction

The mathematics needed in the 21st century is more than the calculus that evolved in fruitful
symbiosis with physics, beginning in the 17th century. Leibniz, who was one of the inventors
of this mathematical calculus, also conceived of a logical calculus at the time. He put great
emphasis on logical rules to guide thinking, on a universal language to organize concepts, and
on algorithms to solve problems. The idea of the logical calculus came to theoretical fruition
only in the first half of the 20th century, but it has become absolutely vital during the second
half of that century in the context of the computing revolution. There is wide agreement that
the crucial components of this new calculus are proofs, functions, and computations;
Thurston [27] and Wing [29] discuss complementary and supportive views. A broad
perspective of this new logical calculus has shaped the intellectual direction for the AProS
Project: its fundamental components are to be presented in a fully computer-based course
called Computational Logic.

In collaboration with a number of colleagues and students I have pursued the AProS
Project for roughly twenty years.2 (AProS stands for Automated Proof Search.) The core of
the project has been the development of the automated search method AProS for finding

1The respective URLs are: http://www.cmu.edu/oli/ and http://www.phil.cmu.edu/projects/apros/.
2More information about the AProS Project, in particular concerning collaborators and background, can be

found at www.phil.cmu.edu/projects/apros/. The project’s central directions, restricted to pure logic, were initially
pursued as the Carnegie Mellon Proof Tutor Project. — Thanks to all participants and special thanks, on this
occasion, to Douglas Perkins who helped me to greatly improve my presentation.

! The Author, 2007. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/jigpal/jzm026

 Logic Journal of IGPL Advance Access published August 31, 2007

http://www.cmu.edu/oli/
http://www.phil.cmu.edu/projects/apros/

natural deduction proofs in classical, intuitionist, and minimal logic, as well as in some modal
logics. The methods were extended to finding proofs in elementary metamathematics (see
[26]) and are being adapted now for basic set theory. The motivation was at first purely
pedagogical, as it was to serve as the basis for intelligently tutoring students in their efforts to
construct arguments. A report was given in [23]. However, some theoretical logical challenges
had to be overcome and it took a long time to develop and implement proof search methods
that are strategically motivated as well as efficient. It took an even longer time before we
began designing an instructional setting for our pedagogical objectives; in the summer of
2003 we started to develop a computer-based introduction to modern logic, Logic & Proofs,
which is focused on the strategic discovery of proofs. Logic & Proofs contains the core of
material that will be systematically extended over the next two years to a novel course,
Computational Logic: the treatment of proofs is to be deeply integrated with that of functions
(in 2007) and computations (in 2008).3

The development of the new material for Computational Logic provides one obvious and
important context for our work; but there is a second one, namely, Carnegie Mellon’s Open
Learning Initiative, OLI. This initiative is supported by a group of faculty with strong
pedagogical interests. Its goal is to develop web-based courses in a variety of subjects. OLI
courses should be excellent in their respective fields, but they should also be based on
pedagogical principles that have been discovered through research in cognitive psychology, in
particular through research on computer-based teaching and tutoring; see, for example, [1]
and also [21]. A number of cognitive psychologists, Koedinger and van Lehn among them, are
members of the OLI group. (OLI and its goals are described at www.cmu.edu/oli/.) Our
course addresses not only a real educational need, but serves also as a Learning Laboratory
to investigate, for example, i) the effectiveness of using a dynamic tutor for strategic
thinking, and ii) the empirical adequacy of the model for strategic thinking that underlies the
tutor.4

1 (Proofs in) Logic

Logic is involved in the systematic development of any subject, once basic principles
(axioms) have been formulated and inferences are used to obtain other statements
(theorems) as logical consequences. On a large scale, such a development was achieved in
mathematics for the first time through Euclid’s Elements. In that remarkable work
inferential principles were not explicitly given, however; it took more than 2000 years before
an adequate logic was formulated in the second half of the 19th century. Building on Hilbert
and Bernays’s work in the 1920s as represented in [13]—work that aimed at providing the
means for a direct formalization of mathematical arguments—Gentzen formulated
natural deduction systems in his thesis ‘‘Untersuchungen über das logische Schließen’’,
translated in [10]. His systems use exclusively elimination and introduction rules for the
logical connectives and have the further distinctive feature of allowing assumptions in
arguments.

3This project together with its empirical evaluation is being supported by National Science Foundation grant
0618806 (Mathematical Science Division, CCLI - Expansion Projects).

4 In this way our work joins the two purposes of research in mathematics education articulated by Schoenfeld in
[22], p. 641, namely, to understand on the one hand the nature of mathematical thinking, teaching and learning, and
to use on the other hand such understanding to improve instruction.

2 Strategic Thinking & Computational Logic

1.1 Strategic moves

We use a version of Gentzen’s calculus for classical logic; the appropriate versions for
intuitionistic and minimal logic as well as for modal logics are easily formulated; see [19]. The
rules for sentential connectives and quantifiers are standard; only the formulation of the rules
for negation deviates from Gentzen’s and Prawitz’s.

:I : ½’" :E : ½:’"
..
. ..

.

? ?
:’ ’

These two rules are supplemented by the ?-introduction rule:

? I : :
?

The rules reflect the meaning of the connectives and capture local tactics for their
use, but do not directly yield strategies for argumentation. Focusing on this goal, we
distinguish three basic strategic moves: forward (use of elimination rules, except for :E, to
infer formulae from assumptions or already obtained formulae), backward (use of inverted
introduction rules to set up new subgoals), and indirect (use of :E); the strategic moves
are to be applied in this order. Notice that we do not apply introduction rules in a forward
direction.

There remain, however, at least two strategic problems. The first is this: the restricted
forward moves can be pointless, unless they are ‘‘goal directed’’, i.e., the (current) goal is a
positive subformula of an assumption and can be reached potentially by a sequence of
elimination inferences. The form of the statement in which the goal is embedded determines
this sequence uniquely, and elimination rules should be applied only in such contexts. We call
the sequence an ‘‘extraction sequence’’ and say that we ‘‘extract’’ the goal from the
appropriate premise. The second problem concerns the choice of a contradictory pair and
: when, in an indirect argument, the falsum ? has to be inferred: attention can be
restricted to formulae whose negation : occurs as a positive subformula of an
assumption.

This strategic approach to proof construction is at the intellectual center of Logic & Proofs.
Students practice it in the Carnegie Proof Lab or CPL. In the Proof Lab, Fitch Diagrams are
used for the presentation of natural deduction proofs. The Lab is the critical place for
actively engaging individual students. It is a sophisticated application for constructing proofs
that allows students to make logical moves in the most intuitive way. In particular, they can
argue forward and backward; in [21] it was shown that this is crucially important for students
to find difficult arguments. The Lab also diagnoses errors in employing rules or manipulating
proofs. The error-reports provide links to instructional material related to the mistakes.
Students can preview moves before applying them in their argument, and they can also save
partial work. The interface is quite intuitive; the reader can get a good impression, by
opening, for example, the exercise section of Chapter 7 and seeing how students can work in
the Lab. (The URL is in note 1.) Within the very near future we shall take another important
step and provide dynamically generated tutorial support: the Lab will be connected to the

Strategic Thinking & Computational Logic 3

AProS proof generator yielding the equation Proof Lab þ Proof Generator ¼ Proof Tutor;
that is discussed in section 2. All of this is to address, in the context of logic, the core
challenge for teaching any formal material well, namely, to make up for the dramatically
varied background of students by highly individualized instruction.

1.2 Pedagogical structures

The instruction in Logic & Proofs goes beyond teaching symbolic languages and formal
calculi, as it helps students gain a reflective approach to proof construction. This reflective
approach is supported by the strategic component I just sketched, but also by emphasizing
the interpretation of symbolic languages, i.e., by an important semantic component. How are
these considerations embedded in the course content? To answer this question, I give an
overview of Logic & Proofs. However, it is best to enter the virtual classroom for the course
and explore it in some detail.

A brief ‘‘Preface’’ surveys the course and articulates its main goals. It is followed by an
‘‘Introduction’’ that connects arguments with the logical form of statements. Sentential
logic is then systematically explored in six chapters. The first chapter, ‘‘Syntax and
Symbolization’’, discusses the syntax of sentential logic and the use of formulae to represent
the logical form of statements. The truth-functional meaning of the connectives is presented
in Chapter 2, ‘‘Semantics’’, and exploited to motivate the construction of truth-trees
(or analytic tableaux). Such a construction is presented as an efficient way of obtaining
counterexamples. This semantic approach is contrasted with systematically finding proofs in
the next three chapters, ‘‘Derivations’’, ‘‘Indirect Rules’’, and ‘‘Strategies and Derived
Rules’’. The sixth and final chapter, ‘‘Elementary Metamathematics’’, discusses truth-
functional completeness of various fragments of the language, normal forms, and the
semantic completeness of the calculus. This basic structure is mirrored in the following six
chapters for the treatment of predicate logic (with identity).

The overall design of the course and the detailed presentation of material are to invite
active engagement and critical reflection. The organization of the individual chapters serves
the very same purpose. Every chapter is introduced by a brief lecture describing its content
and formulating its learning objectives. That is followed by the presentation of the core
material divided into topically coherent sections. Finally, there is a chapter review in which
students look back at the learning objectives and then have ample opportunities to explore
problems. Crucially, every major concept or technique is accompanied and supported by
engaging ‘‘Interactive Learning Environments’’ (ILEs) or ‘‘dynamic cognitive mini-tutors’’.
If you are already web-connected to Logic & Proofs, listen to the brief lecture on formal
syntax at the beginning of Chapter 2. Then look at a paradigmatic ILE concerning parse
trees that discusses how one decides whether or not a particular string of symbols is a
grammatically correct formula of the language.

As mentioned above, the reflective approach to proof construction has two components,
the strategic one and a complementary semantic one: students have to gain insights into
semantic relations like logical consequence (and its connection to counterexamples). That
requires a detailed discussion of the truth definition for sentential and predicate logic. Again,
if you are web-connected to Logic & Proofs, listen to the brief lecture on ‘‘chasing truth up
the tree of grammar’’ at the beginning of section 1 in Chapter 3; then look at the ILEs that
follow immediately. It is our goal here to go dramatically beyond the current thorough
presentation and build a sophisticated Semantics Lab that will do for semantic modeling

4 Strategic Thinking & Computational Logic

what the Proof Lab does for syntactic proof construction. That is a project I am pursuing
jointly with a colleague at Stanford, Grigori Mints.5

We have offered Logic & Proofs at Carnegie Mellon and at IUPUI (Indiana University and
Purdue University at Indianapolis), beginning in the fall of 2003. It has been taught
successfully to about 300 students each year; in the academic year 2006/07 we had more
than 400 students. We solicited feedback from students and used their responses to
iteratively improve the course; as to the effect of introducing ILEs see [4]. Among the
students who have taken Logic & Proofs at Carnegie Mellon is a surprising number of
graduate students—roughly 10%—mostly from Engineering departments. Undergraduates
taking the course are from many different parts of the University, from Computer Science
and Engineering, English and Philosophy, Biology and Physics, and the College of Fine Arts
(mostly the School of Drama).

2 Automated Search & Tutoring

The systems of natural deduction are indeed natural for human proof construction.
For the longest time they were considered as ‘‘unsuitable for automated theorem proving’’;
that’s how Fitting expressed it in the first edition of his book [9] on theorem proving.
The preferred theorem proving methods were, and to a large extent still are, based on either
resolution or on tableaux systems, which are notational variants of Gentzen’s sequent calculi.
To overcome this unsuitability, I introduced intercalation calculi for sentential logic in the
late 1980s and for full predicate logic in the early 1990s. (See papers [23]-[25] and the
dissertation [5].)

2.1 Exploring questions

Intercalation calculi provide the proof theoretic underpinnings for automated proof search.
Indeed, their role in the search for natural deduction proofs corresponds roughly to
that of cut-free calculi in the search for sequent derivations. They allow building up
suitable search spaces that contain either a normal proof or a counterexample. Using this
observation one can establish a sharpened completeness theorem: If ’ is a logical consequence
of !, then there is a normal proof of ’ from !. That allows one to obtain in turn a normal
form theorem by semantic means: If there is a proof of ’ from !, then there is a normal proof
of ’ from !.

To obtain these metamathematical results most directly, we use a formulation of
intercalation calculi that locates them properly between sequent and natural deduction
calculi. In his 1936 paper on the consistency of arithmetic, Gentzen gave a sequent
formulation of natural deduction; see [10]. Let me indicate his rules for conjunction as an
example. &I: if there is a proof of ’1 from ! and a proof of ’2 from !, then there is a proof of
’1 & ’1 from !; &E: if there is a proof of ’1 & ’1 from !, then there is a proof of ’1 from !
and a proof of ’2 from !. The basic configurations in proofs are sequents of the form ! % ’,
where ! is a finite sequence of formulae, the open assumptions on which ’ depends. All the
rules, except for the structural ones Gentzen uses, operate essentially on the right-hand side
of the horseshoe.

5This collaborative work builds on the project ‘‘Define/Check’’ Mints pursued in 2002/03.

Strategic Thinking & Computational Logic 5

By contrast, the basic configurations of intercalation calculi are questions of the form
! ; " ? ’. Both ! and " are sequences of formulae, ! indicating the premises from which ’
may be inferred and " a sequence of formulae obtained by elimination rules applied to an
element of ! containing ’ as a positive subformula. (Structural rules are not used at all.) The
crucial point to notice is that elimination rules are only applied on the left-hand side of the
question mark, whereas introduction rules are used only on the right-hand side. That
corresponds to the tactical moves I discussed above and, in this metamathematical context,
avoids detours of steps leading to non-normal proofs.

If we start out with the question ! ? ’, i.e., is there a (normal) proof leading from
assumptions in ! to ’, then we can build up a search space using the rules of the intercalation
calculus. The proof generator AProS is a logically complete procedure for traversing this
space: if there is a proof of ’ from the given premises !, AProS finds a normal proof. The
generator is guided strategically in the same way as our students, namely to pursue in a
refined way the three basic moves: forward, backward and the classical indirect argument via
:E. You can download AProS at http://www.phil.cmu.edu/projects/apros/ and follow its
search stepwise for proofs of Tertium non datur, Contraposition, de Morgan’s Law or any
problem of your choice.

2.2 Finding answers

The Proof Tutor will link AProS and the Proof Lab. It is intended to help students as follows:
if a student requests help in constructing a proof, the Tutor asks AProS to complete the
argument from (essentially) the point the student left it. The Tutor then analyzes the
strategic moves in AProS’s proof and provides hints, based on its analysis. The first hint will
be a general strategic one; subsequent hints will provide more concrete advice on how to
proceed. The last hint in the sequence will recommend that the student take a particular step
in the proof construction.

As the first step of building the Tutor, we have begun to automatically analyze completed
proofs given by AProS, i.e., to walk through and describe AProS proofs. Since AProS’s
procedure is strategically guided, one can trace its search path and obtain information on
which to base a broad description as well as successive refinements. In the second step of
building the Proof Tutor, we are considering partial proofs given by a student and provide
advice on how to complete the argument. That may require backtracking in the proof search
and choosing a different path in the search space. This proof theoretic problem of pruning a
given partial proof is being explored now by my student Douglas Perkins as part of his
M.S. Thesis ‘‘Strategic Proof Tutoring in Logic’’.

Our implementation will be informed by good solutions of the logical problems, but also by
interface considerations and metacognitive features of effective computer-based tutors.6 In
particular, the structure of the interaction between Tutor and students will take into account
our broad goal of emphasizing the connection between formal and informal reasoning
together with the crucial need of strategic reflection. Ultimately, the implementation has to
be measured against the effective support the Tutor provides to students. Here detailed
empirical investigations come in; we are currently analyzing the effect of ILE supported
instruction on students’ strategic proof attempts.

6Cf. the investigations of Aleven and Koedinger in [1].

6 Strategic Thinking & Computational Logic

http://www.phil.cmu.edu/projects/apros/

3 Functions & Computations

The expansion of the logical material to elementary set theory and to the basic theory of
computation has two distinct purposes: the first and primary one is, naturally, to convey
fundamental knowledge to students; the second is to exploit the strategic approach to
giving proofs in logic for presenting the sophisticated course material in a rigorous way. In
the first expansion, proofs are no longer purely logical, but use definitions, theorems and a
thorough understanding of core concepts. We will expand AProS and the Proof Tutor
to provide automated tutoring that emphasizes key heuristics in addition to logical
strategies. For the basic theory of computation we are going to proceed differently; that is
discussed below.

3.1 Elements of set theory

Here is a brief outline of the topics that are to be discussed in six chapters, the first three of
which present material that is canonical for an elementary introduction to set theory; cf. the
very thoughtful and polished presentations by Devlin [8] and Velleman [28]. The first chapter
begins with an informal characterization of sets and formulates two basic principles,
extensionality and separation. Functional relations are discussed, and the standard Boolean
operations, but also the powerset operation, are introduced as set generating processes.
Finally, natural numbers are set theoretically given and the principle of proof by induction is
justified. The second chapter introduces ordered pairs; relations and functions between sets
can then be seen as set theoretic objects. We discuss and establish the basic properties of
injections, surjections, and bijections. Finally, the principle of (primitive) recursive definition
is justified. The third chapter is devoted to diagonalization, the proof of Cantor’s Theorem,
and a detailed argument for the Cantor Bernstein Theorem.

The center of attention in these chapters is the concept of function, which reflects, as
Dedekind put it in his classical essay [7], ‘‘the ability of the mind to relate things to things, to
let a thing correspond to a thing, or to represent a thing by a thing, an ability without which
no thinking is possible.’’ The topics in the remaining chapters are deeply related to this
conceptual core, except for Chapter 4, which presents the Zermelo Fraenkel axioms for
set theory (ZF) and discusses segments of the cumulative hierarchy as the intended model for
ZF. The point of this chapter is for students to gain a thorough understanding of
the axiomatic method and see that the informal, but rigorous developments in the
three preceding chapters are directly formalizable in ZF. The fifth chapter introduces
graphs and explores colorings as well as matchings. In the sixth chapter we transition to
the second expansion and discuss, in detail, Gödel’s definition of general recursive
functions as those number theoretic functions that satisfy recursion equations and whose
values can be determined, for each set of arguments, via elementary rules for equational
reasoning.

3.2 Basics of computability theory

Having moved from purely logical arguments to proofs in set theory and having shifted from
general set theoretic functions to the calculable number theoretic ones, we develop
elementary computability theory guided by the classical texts of Davis [6] and Kleene [15];
our perspective is that of [17]. The concept of a ‘‘Turing machine computation’’ is at the

Strategic Thinking & Computational Logic 7

center of this expansion, and the crucial point is for students to gain an appreciation of the
power and limitations of computational methods.7

Here is a brief description of the mathematical topics. Chapter 1 discusses the decidability
of monadic logic, finite state machines, and the general decision problem. The second chapter
covers Turing machine computations and looks at some problems that can be effectively
decided by Turing machines but not by finite state machines. In the third chapter the Turing
computability of all general recursive functions is shown, as is Kleene’s normal form theorem.
The next chapter establishes the unsolvability of the halting problem, which is used in
Chapter 5 to prove the undecidability of predicate logic. In Chapter 6 Gödel’s
Incompleteness Theorems [12] will be established for set theory, at an abstract level. The
phrase ‘‘at an abstract level’’ means that we take for granted as axioms the crucial
representability and derivability conditions, as well as the construction of self-referential
statements; that was presented in [26].

3.3 Extension of AProS

The core strategies of the generator can be expanded to efficiently prove, at an abstract level,
Gödel’s Incompleteness Theorems and the Cantor Bernstein Theorem. If the underlying
approach can be further generalized and results in adequate procedures, then we have the
beginnings of a deep characterization of the cognitive operations involved in finding proofs in
mathematics. In any event, for the elementary part of set theory to be developed in
Computational Logic, it is very plausible that AProS will prove all the relevant theorems. At
issue is in what form strategic thinking can be extended most effectively from the formal
context of pure logic to the semi-formal one of set theory and, then, to the informal context of
computability theory. This is crucial for the pedagogical and cognitive goals.

In order to provide tutorial support in set theory, not only the proof search procedure of
AProS has to be extended, but also the functionality of the Proof Lab. Gibson in [11] has
already extended AProS so that identities are naturally incorporated into the search
procedure. For elementary set theory we have to achieve two goals: first, obtain a fully
automated version of the argument in [14] and, second, to establish the intermediate
lemmata used in this proof from the axioms for set theory. Appropriate heuristics,
complementing the basic strategic search, can be found; this is in the classical tradition of
Polya [18], but is also informed by contemporary work on proof planning, e.g., by Bundy [3]
and Melis [16]. The crucial task is to isolate the ‘‘leading ideas’’ underlying a part of
mathematics and to formulate them procedurally. That was done quite successfully for the
proof of the Incompleteness Theorems in [26] and will provide the basis for tutorial support
on the Gödel material that is presented in the last chapter of Computational Logic.

4 Concluding Remarks

Implementing the course amounts to building a Learning Laboratory for investigating the
effectiveness, extendibility, and transfer of strategic thinking. The Proof Lab is the crucial
instrument for this research, as it allows us to collect data sufficient to reconstruct, at every
stage, the state of a student’s proof search: it allows us to look into the ‘‘proving mind’’.

7 For this part we are, with the permission of John Etchemendy, going to transform Turing’s World into a
Computing Lab, in which students can program and run Turing machines.

8 Strategic Thinking & Computational Logic

Not only can we evaluate the effectiveness of dynamic tutoring and other pedagogical
matters, but we can also investigate the adequacy of AProS as a cognitive model of strategic
thinking in logic and beyond, i.e., analyze in the most refined way rational argument
construction.

Such analyses are connected with work in cognitive psychology. Rips formulated in [20] a
computational theory of mental proofs given by PSYCOP, an automated theorem prover
that has structural similarities with AProS. In addition, AProS’s search procedure falls
under Anderson’s ACT-R theory, as it is production rule based; its operations can be
integrated into the cognitive architecture as directly as the restricted algebraic operations
Anderson considers in [2]. Above and beyond the logical and empirical support for the claim
that AProS reflects deep features of human argumentation, there is thus a theoretical
integration suggesting psychological naturalness.

AProS and its extensions provide the intellectual basis of our sophisticated Proof Tutor for
logic and elementary set theory. The Tutor will assist students to practice the ways of
strategic thinking in formal and semi-formal contexts and transfer them to informal, but
logically structured ones; it will help us to teach effectively the basic components of
Computational Logic, the calculus for the 21st century, and transcend the boundaries of
standard educational settings.

References

[1] V. Aleven and K. Koedinger: An effective metacognitive strategy: learning by doing and
explaining with a computer-based Cognitive Tutor; Cognitive Science 26, 2002, 147–
179.

[2] J. Anderson: Human symbol manipulation within an integrated cognitive architecture;
Cognitive Science 29 (2005), 313–341.

[3] A. Bundy: Planning and patching proof; in: B. Buchberger and J.A. Campbell (eds.),
Artificial Intelligence and Symbolic Computation, Springer-Verlag, 2004, 26–37.

[4] M. Burke: Logic and Proofs (Web-based course); Teaching Philosophy 29 (2006),
255–260.

[5] J. Byrnes: Proof Search and Normal Forms in Natural Deduction; Ph.D. Dissertation,
Carnegie Mellon, 1999.

[6] M. Davis: Computability and Unsolvability; New York, 1958.
[7] R. Dedekind: Was sind und was sollen die Zahlen? (1888); its translation is found in:

W. Ewald (ed.), From Kant to Hilbert, Oxford University Press, 1996, 790-833.
[8] K. Devlin: Sets, functions, and logic — an introduction to abstract mathematics;

Chapman & Hall, 2004.
[9] M. Fitting: First-order logic and automated theorem proving; Springer-Verlag, 1990.

[10] G. Gentzen: The collected papers of Gerhard Gentzen, edited and translated by
M.E. Szabo; North-Holland, 1969.

[11] T. Gibson: Proof search in first-order logic with equality; MS Thesis, Carnegie Mellon,
2006.

[12] K. Gödel: On undecidable propositions of formal mathematical systems (1934); in:
Collected Works, volume I, Oxford University Press, 1986, 346–371.

[13] D. Hilbert: Die Grundlagen der Mathematik (1927); translated in: J. van Heijenoort
(ed.), From Frege to Gödel — A source book in mathematical logic, 1879–1931; Harvard
University Press, 1967, 464–479.

Strategic Thinking & Computational Logic 9

[14] I. Kash: A partially automated proof of the Cantor-Bernstein Theorem; Senior Honors
Thesis, Adv. W. Sieg, Carnegie Mellon, Computer Science Department, 2004.

[15] S.C. Kleene: Introduction to Metamathematics; North-Holland, 1952.
[16] E. Melis: Why proof planning for Maths education and how?; in: D. Hutter and

W. Stephan (eds.), Mechanizing Mathematical reasoning, Springer-Verlag, 2005,
364–378.

[17] D. Mundici and W. Sieg: Computability, in: Routledge Encyclopedia of Philosophy, 1998.
[18] G. Polya: Mathematical Discovery — On understanding, learning, and teaching problem

solving; Wiley & Sons, 1981.
[19] D. Prawitz: Natural Deduction — A proof-theoretic study; Stockholm, 1965.
[20] L.J. Rips: The Psychology of Proof; MIT Press, 1994.
[21] R. Scheines and W. Sieg: Computer environments for proof construction; Interactive

Learning Environments 4(2), 1994, 159–169.
[22] A.H. Schoenfeld: Purposes and methods of research in mathematics education; Notices

Amer. Math. Soc. 47(6), 2000, 641–649.
[23] W. Sieg and R. Scheines: Searching for proofs (in sentential logic); in: L. Burkholder

(ed.), Philosophy and the Computer, Westview Press, 1992, 137–159.
[24] W. Sieg and J. Byrnes: Normal natural deduction proofs (in classical logic); Studia

Logica 60 (1998), 67–106.
[25] W. Sieg and S. Cittadini: Normal natural deduction proofs (in non-classical logics); in:

D. Hutter and W. Stephan (eds.), Mechanizing mathematical reasoning, Springer-Verlag
2005, 169–191.

[26] W. Sieg and C. Field: Automated search for Gödel’s proofs; Annals of Pure and Applied
Logic 133, 2005, 319–338.

[27] W. Thurston: On proof and progress in mathematics; Bull. Amer. Math. Soc. 30 (1994),
161–177.

[28] D.J. Velleman: How to prove it — a structured approach; Cambridge University Press,
1994.

[29] J. Wing: Computational thinking; Communications ACM 49 (2006), 33–35.

Received 1 June 2007

10 Strategic Thinking & Computational Logic

