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Abstract

We present strategies and heuristics underlying a search procedure that finds proofs for Gédel's
incompleteness theorems at an abstract axiomatic level. As axioms we take for granted the
representability and derivability conditions for the central syntactic notions as well as the diagonal
lemma for constructing self-referential sentences. The strategies are logical ones and have been
developed to search for natural deduction proofs in classical first-order logic. The heuristics are
mostly of a very general mathematical character and are concerned with the goal-directed use of
definitions and lemmata. When they are specific to the meta-mathematical context, these heuristics
allow us, for example, to move between the object- and meta-theory. Instead of viewing this work
as high-level proof search, it can be regarded as a first step in a proof-planning framework: the
next refining steps would consist inverifying the axiomatically given conditions. Comparisons with
the literature are detailed in Section 4. (The general mathematical heuristics are indeed general: in
Appendix B we show that they, together with two simple algebraic facts and the logical strategies,
suffice to find a proof of “\/2 is not rational”.)
© 2004 Elsevier B.V. All rights reserved.

1. Background

In a genuinely experimental spirit, we extended the intercalation method for proof
search from pure first-order logic to parts of mathematics by interweaving general logical
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- Strategies with specific mathematical heuristics. The guiding question for our investigation
- was: What is needed, in addition to purely logical considerations, for finding proofs

of significant theorems in a fully automated way? We answer the question for Godel’s
incomp‘l’eteness theoreins {13]. When proved at an abstract axiomatic level they lerid
themselves naturally to such an investigation; they have intricate, yet.not overwhelmingly
difficult proofs, and they are obviously significant. During the academic years 1975-77, the

 firstauthor had taken steps towards establishing them interactively. That work was done for
“a computer-based course on Elementary Proof Theory; a detailed report was given in [18]

and a brief summary in [22]. ‘

Elementary Proof Theory presented the. incompleteness theorems for ZF*, that is
Zermelo-Fraenkel set theory without the axiom of infinity; see, for example, [7]. Its major
innovation consisted in carrying out the mieta-mathematical work in a formal theory of
binary trees and elementary inductive definitions, called TEM.! Without the detour of their
arithmetization, the inductively given syntactic notions were shown to be representable in
ZF*; the diagonal lemma was established and the proof of the Hilbert-Bernays derivability
conditions, central for the second theorem, was sketched. Within that high-level framework
the standard material on the incompleteness theorems is compact and the proofs are direct.
It was natural to ask, whether the proofs can be found via an appropriate extension of the

intercalation method.

The arguments for the incompleteness theorems are carried out in the first-order theory
TEM: instead of viewing syntactic objects as (having been coded as) natural numbers, we
consider them as finitely branching trees; instead of definin g syntactic notions recursively,
we specify them by elementary inductive definitions, briefly, by eid’s. In the language of
TEM we have the constant § for the empty tree and the function symbol [ , ] for the binary
operation of building a tree from two given ones. We use X, ¥, Z—possibly with indices—
as variables ranging over binary trees. The axioms for S and [, ] are formulated in analogy
to those of Dedekind—Peano arithmetic for zero and successor. The further axioms of TEM
include the induction principle for binary trees, and closure and minimality conditions for
the eid’s. Instead of discussing these axioms in generality — the details do not matter for
the current project ~ we specify some definitions that are actually needed to characterize
the formal theory for which the incompleteness theorems are to be proved.

The theory to be considered is ZF*, Zermelo and Fraenkel’s theory of sets without the
axiom of infinity. The details of its axiomatic formulation do not matter either for the
current project. Let us assume that it is formulated in a first-order language with x, y, z
— possibly with indices — as variables ranging over sets. To indicate the general character
of eid’s we specify the generating clauses of the familiar notion of a formula (taking for
granted the concepts of atomic formula and of variable); @ stands for any binary sentential
connective, Q for the existential or universal quantifier:

If X is an atomic formula, X is a FORMULA;

If X is a FORMULA, [~, X] is a FORMULA; :

If X is a FORMULA and Y is a FORMULA, [@, [X, Y]] is a FORMULA;
If X is a variable and ¥ is a FORMULA, {[Q. X], Y]isa FORMULA.

L TEM abbreviates Theory for Elementary Meta-Mathematics. Feferman systematically investigates in his
papers [10] and [11] the use of “finitary inductive” definitions in meta-mathematics.



W. Sieg, C. Field / Annals of Pure arid Applied Logic 133 (2005) 319-338 321

We write also “FORM(X)” for “X is a FORMULA”. TEM contains for such eid’s a
closure and a minimality principle. The first principle asserts that FORM is closed under
“the above clauses and is'expressed by ‘

FOR ALL X (if A(FORM, X) then FORM(X)) 2

The minimality. principle claims that FORM is the smallest such class. This is

appfoxim'ate_d in first-order logic by the usual principle of induction for formulas:
 IfFORALL X G (P, X) then P(X)) |
o then FOR ALL X (if FORM(X) then P(X))..

Formulas are binaty trees built up from the empty tree using pairing. In a similar way. one
can generate inductively the relation X is g proof of Y from assumptions Zy, .. ., Zy or
from a (n inductively generated) class of axioms; if X isa proof of Y using axioms of ZF*,
this relation is denoted by PROOF(X, Y). To indicate that there is a ZF*-proof for ¥, we
write ZF*|-(Y), ZF*|-Y or THEO(Y).

Using the constant @ and the set-theoretic pairing operation <, > one can build up
terms in the language of ZF* whose parse trees are isomorphic to the binary trees; they
are used as names for the meta-mathematical trees in the same way as numerals in
Dedekind—Peano arithmetic are used as names for natural numbers. With every meta-
mathematical tree we can directly associate its set-theoretic name or code: CODE(S) = &
and CODE([X, Y]) = <CODE(X), CODE(Y)>. We also write [_X_| for CODE(X) or
indicate it by X. This is the apparatus needed to formulate the representability conditions
for the syntactic notions. We give them paradigmatically for FORM and PROOF:

If FORM(X) then ZF*|- form(X), and

If NOT FORM(X) then ZF*|- ~form(X);
“form” is a formula in the language of set theory for which these conditions are provable
in TEM. Similarly, there is a formula “proof” in the language of ZF* that represents the
proof relation PROOF:

If PROOF(X, Y) then ZF*|- proof(X, ), and

If NOT PROOF(X, Y) then ZF*|- ~proof(X, ¥).

Using the first representability condition for PROOF one can establish:
If THEO(Y) then ZF*|- theo(Y),

where theo(y) abbreviates (Ex) proof(x, y).3 Finally, we will use the Self-reference.
Lemma (or Diagonal Lemma) in the form: if F is a formula in the language of set

2 20(P, X) is obtained from the generaling clauses; it is the disjunction of the following TEM-formulas: i)y X
is atomic; (ii) (X)q is ~ and P(X)1): (i) (X)g is @ and P{({X)1)g) and PX) )1 Gv) ((X)o)o is Q and
((X)g); is a variable and LX) (). P can be viewed as either a meta-variable over TEM-formulas or as a free
second-order variable; under the second reading we have an appropriate substitution rule in the logical calculus
for TEM.

3 The existential quantifier here is £, rather than the standard symbol 3, to reflect the notation used for ZF* in
APROS. In addition, the universal quantifier is A,
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theory (with one free variable), then there is a sentence Dp in that very language such
that ZF* proves (Dp<->F(Dp)). Applied to the formula ~theo(y), the self-reference
lemma yields the Gidel sentence G that expresses its own unprovability, i.e., ZF* proves
(G <-> ~theo(@)).

With this systematic background it is not difficult to prove that G is not provable in
. ZF* assuming, of course, that ZF* is consistent. So let us assume - in order to obtain
a contradiction — that ZF* proves G; then, by the diagonal lemma concerning G, ZF*
proves ~theo(G). On the other hand, by the (semi-) representability of THEO, we can-
infer from the fact that ZF* proves G, that ZF* establishes theo(G). Thus, ZF* proves both
~theo(G) and theo(G), and we have obtained a contradiction! The independence of G
requires a proof that ~G is not provable either; for that a stronger assumption concerning
ZF*, stronger than mere consistency, has to be made. Godel used for that purpose the notion
of w-consistency; the corresponding concept for the context of our meta- mathematical set-
up is T-consistency, thinking of t as the class of (sets denoted by codes for) binary trees.
ZF* is t-consistent is defined by the condition: there is no formula F (y) such that ZF*
proves (Ey) (t(y) & F(y)) and also ~F(Y) for all Y; or equivalently, for all formulas
F(y), if ZF* proves ~F(Y) forall ¥, then ZF* does not prove (Ey) (t(y) & F(y)). _

Assuming that ZF* is T-consistent; we show now that ZF* does not prove the negation
of the Godel sentence G. By what we established already (and the fact that t-consistency
implies ordinary consistency) we know that

FOR ALL X: NOT PROOF(X, G);
the representability of PROOF implies
FOR ALL X: ZF*|- ~proof(X, G).
But then the t-consistency of ZF* ensures
NOT ZF*|- (Ey) proof(y, G).

As the formula (Ey) proof(y, G) is abbreviated by theo(G), we can use the self-reference
lemma for G to infer that this formula is in ZF* provably equivalent to ~G. Thus,
NOT ZF*|-(~G), and the independence of G from ZF* has been established.

Given the axiomatic context provided by the representability of PROOF and THEO
and the self-reference lemma applied to ~theo(y), the proofs are direct, yet intricate. To
take a first step towards describing the search algorithm that finds proofs of these and
related theorems, we present briefly the basic ideas underlying the intercalation method for
classical logic; for the theoretical underpinnings we refer to Sieg [19], Sieg and Byrnes {20]
and Byrnes [6]. We should emphasize at this point that, in our view, logical formality
per se does not facilitate the finding of proofs. However, logic within a natural deduction
framework does help to bridge the gap between assumptions and conclusions by suggesting
very rough structures for arguments, i.e., logical structures that depend solely on the
syntactic form of assumptions and goals. This role of logic, though modest, is the crucial
starting-point for moving up to subject-specific considerations that support a theorem. In
the case study at hand we will show, how far these logical considerations go, and how they
can be extended quite naturally by the leading mathematical ideas underlying Gédel’s
proofs.
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2. Intercalation: broad strategies & special heuristics

The intercalation method is a proof search procedure that is goal-directed and guided
by the possibly expanding syntactic context of the problem at hand. In first-order logic
it is a complete procedure and a basis for broad logical strategies. The fundamental
idea is straightfdrwa_rd. In order to bridge the gap. between premises Aj,..., A, and a
goal B, one applies systematically the rules of the natural deduction calculus, i.e., the
elimination rul€s are applied only from “above”, whereas the introduction rules are inverted
and applied from “below”. Such systematic applications of the rules generate a search
space that either contains a proof of B from the assumptions Ay, ..., A, or provides a
‘semantic countérexample to the claim that B is a logical consequence of Ay, ..., A,—
tertium non datur; in addition, proofs contained in the search space are necessarily normal.
The argument for this sharpened completeness theorem provides a method for searching
directly for normal proofs; indeed, it yields also a semantic argument for normal form
theorems in natural deduction. Such argiments concerning classical first-order logic were
first given in [19], later also for intuitionistic logic and some modal logics in collaboration
with Cittadini in [21].

Normal proofs satisfy a similar subformula property as cut-free derivations in the
sequent calculus. That, of course, allows a restriction of the systematic search and is basic
for broad strategies underlying our proof search: (i) extracting B via elimination rules—if
B is a strictly positive subformula of an assumption, (ii) sub-goaling via the appropriate
inverted introduction rule—if B is a logically complex formula, (iii) refuting B via the
rules for negation—if B is a negation or an atomic formula and if an appropriate pair
of contradictory formulas is available. In the latter case there must be a negation that
is a strictly positive subformula of an assumption. It is evident that direct proof search
is strongly and naturally constrained by the syntactic context of the problem, as only
particular subformulas can be intercalated between assumptions and goals.

With these logical strategies in the background let us return to the proof of the first
part of the first incompleteness theorem and examine, how the intercalation method might
find it with “a little help” (when pure logic is unable to proceed any further). So we begin
with the goal NOT (ZF*|-(G)) and the premise ZF*CONS. We also have a definition and
a lemma available, namely, the definition

ZF*CONS IFF NOT [ZF*|-(G) AND ZF*|-(~G)]
and the consequence of the diagonal lemma for ~theo(x), i.e.,
ZF*|-(G <-> ~theo(G)) *

The goal cannot be extracted from the premises. Thus, the algorithm proceeds indirectly
with the assumption ZF*|-(G) and needs a pair of contradictory formulas as new goals.

4 we could have chosen one of the more general formulations of consistency, for example,
NOT (EXISTS X}(ZF*[-(X) AND ZF*|-(~X)). The quantificational search in the SH-expansion (see [20])
would find the appropriate instance quickly.



324 ' W. Sieg, C. Field / Annals of Pure and Applied Logic 133 (2005) 319-338

However, no negation occurs as a'strictly positive subformula of the premise. As there is a
negatlon it the definition of the premlse, we use it and the premise to infer-

NOT [ZF*|-(G) AND ZF*|- (NG)]

This negation is one element of a co_ntradictory pair, and the algorithm attempts to
prove [ZF*|-(G) AND ZF*|-(~G)]. This formula cannot be extracted: even though it is
a subformula of a premise, it is not a strictly positive one. So the algorithm inverts the
formula and attempts to prove the new goals ZF*|-(G) and ZF*|-(~G). The former goal is
already.an assumption of the indirect proof, so we examine the latter goal.

It is here that we make the first significant change to the proof search procedure.
ZF*|-(~G) cannot be extracted, but as an existential formula it can be inverted. Instead
of searching for a term in the language of TEM describing a ZF*-proof of ~G, the search
proceeds “inside” ZF*. The claim ZF*|-(~G) can be justified, after all, by the presentation
of a proof of ~G within ZF*. The procedure tries now to find a ZF*-proof for the goal
~G. As the formula ~G cannot be extracted, indirect proof is applied to ~G: assume G
and find a contradictory pair. There is no negation immediately available in the premises,
except through the diagonal lemma for G. Note that this lemma is formulated within TEM
as a provability claim for ZF* and should be available for any ZF*-proof. In general, when
attempting an extraction or looking for contradictory pairs within a ZF*-proof, strictly
positive subformulas of ZF*-formulas A must be considered, where ZF*|-(A) occurs as a
strictly positive subformula of a premise or available assumption in TEM. So, the diagonal
lemma makes available the formula ~theo(G), which is used to construct the contradictory
paif. This leaves theo(G) as a new goal, which cannot be extracted. The regular proof search
procedure would attempt an inversion. But here an additional step can be considered, since
theo is a semi-representable relation: we can justify theo(G) by establishing ZF*|-(G) in
TEM. ZF*|-(G) is an assumption in TEM, so the proof is complete.

The expanded version of the proof search algorithm, which results from the
careful examination of the above proof, interweaves mathematical and purely logical
considerations in an intercalating and goal-directed manner. It has the following main steps:

Extraction

If the goal is in TEM, then extraction functions as described above for first-order logic.
If the goal is in ZF*, then the set of formulas available for extraction is expanded by those
formulas A, for which the claim ZF*|-(A) is extractable in TEM and the goal is extractable
from A. That is the inference ProvE, which is used to turn A into a part of the ZF*-proof.

[nversion

For the standard connectives inversion is applied as discussed earlier. There are two
additional cases where “inversion” is applied. The first case occurs, when the goal in TEM
is a statement of the form ZF*|-(A). Here the algorithm tries to find a proof of A in ZF";
that is the inversion of the inference Provl.® In the second case, when the goal is a formula

3 f the goal is of the form ZF¥|- ([~] rel (X)), the algorithm tries first to prove [NOT] REL(X) direclly.



Extended extraction and inversion ( “Meaning of premises and goals”)

Definitional and other mathematical equivalences are used to obtain either a new

available formula from which the current goal is. extractable or to get an equivalent

theory; currently, we just add the definitions and lemmata explicitly to the list of premises,

Indirect strategies are pursued in the same way as in pure first-order logic, with one
exception: the set of contradictory pairs for indirect proofs in ZF* is expanded by pairs
whose negations are strictly positive subformulas of 4 in case ZF*|-(4) (and this TEM-

Appendix B.

3. Machine proofs & new heuristics

by explaining the format of proofs. Proofs are presented in a modified Fitch-style format,
which can be given using only plain text; cf. [12]. We show the scope of assumptions by
1nserting bars between the number and formula on each line, with nested assumptions being

embedded ZF*-proofs, we mark every line in the object language with a star, Note that ZF*-
proofs retain the scope indications from the meta-language, and appeals to representability
will use all available TEM-assumptions.

The rules include the standard natural deduction rules. For example, conjunction
introduction has the name “AndI”, and the left and right-hand versions of conjunction
elimination are named “AndEL” and “AndER” respectively. To these basic tules we add
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special rule names for every. heurlstlcally applied theorem or lemma. “Rep names the
rule for representable or semi-representable relations, where the premise is a representable
relation in TEM and the conclusion the corresponding relation in ZF*. “ProvE” and “ProvI”
indicate provability elimination and introduction. :

We present first the machine proof of non-provability of the Godel sentence
G, assuming that ZF* is consistent. In addition, the machine uses an instance of
the diagonal lemma ZF*|-(G- <-> ~(theo(G))) and. the definition. of consistency,
ZF*CQNS IFF NOT(ZF*|-(G) AND ZF*|-(~(G))).

Proof.

1. ZF*|-(G <-> ~(theo(G))) Premise

2. ZF*CONS Premise

3, ZF*CONS IFF NOT(ZF*|-(G) AND ZF*] (~(G))) Premise

4. | ZF*|-(G) ' Assumption
. | ~memmmmmmee-

*S5.1G Assumption

| J——— '

*6. |! theo(G) Rep 4

*7. 1 (G <-> ~(theo(G))) ProvE 1
*8. |! ~(theo(G)) o IffER 7, 5
*9. | ~(G) Notl 5, 6, 8
10. | ZF*|-(~(G)) Provl 9

11. | ZF*[-(G) AND ZF*|-(~(G)) _ AndI 4, 10
12. | NOT(ZF*|-(G) AND ZF*|-(~(G))) IffER 3,2
13. NOT(ZF*|-(G)) Notl 4, 11,12 O

To prove the independence of G we have also to establish the non-provability of ~G.
As remarked earlier, that requires the stronger hypothesis of t-consistency. Here are the
premises for the non-provability of ~G: the diagonal lemma ZF|-(G <-> ~(theo(())),
7ZFfCONS, ZF:CONS IMPLIES {(FORALL X)(ZF*|-(~(proof(X, G))) IMPLIES NOT
(ZF*|-(theo(G))))], ZFECONS IMPLIES ZF*CONS, and a reformulation of what was
established above, namely ZF*CONS IMPLIES (FORALL X)(NOT(PROOF(X, G))).

Proof.
1. ZF*|-(G <-> ~(theo(())) Premise
2. ZF{CONS Premise

3. ZF{CONS IMPLIES
[(FORALL X)(ZF*|-(~(proof(X, G)))
IMPLIES NOT(ZF*|-(theo(G))))] Premise
4. ZF;CONS IMPLIES ZF*CONS Premise

0 When following this argument and all the other machine proofs, the reader should keep in mind the
intercalation strategies for bridging the gap between assumptions and goals. After all, they motivate the steps
in the arguments.
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5. ZF*CONS IMPLIES
(FORALL X)(NOT(PROOF(X, G)))) Premise

6. | ZF*|-(~(G)) : Assumption
| e . -
*7. It ~(theo(G)) : Assumiption
| P— _
*8. |1 (G <-> ~(thieo(G))) ProvE1
.1 G v IffEL 8, 7
*10. [F~(G) ProvE 6
*11. | theo(G) _ NotE7,9,10 -
12. | ZF*|-(theo(G)) ProvI 11

13. | (FORALL X)(ZF* |-(~(proof(X, G)))
' IMPLIES NOT(ZF*|-(theo(G))) ImpE 3,2

14. | ZF*CONS ImpE 4, 2
- 15. [ (FORALL X)(NOT(PROOF(X, G))) ImpE 5, 14

16. | NOT(PROOF(X, G)) ' AlIE 15

*17. | ~(proof(X, G)) Rep 16

18. | ZF*|-(~(proof(X, G)) ProvI 17

19. | (FORALL X)ZF*|-(~(proof(X, G))) AlIT 18

20. | NOT(ZF*|-(theo(G))) ImpE 13, 19

21. NOT(ZF*|-(~(G))) Notl 6,12,20 O

For. the proof of the second incompleteness theorem, ie., the non-provability of
the formal consistency statement zf*cons under the assumption of the consistency of
ZF*, the formalism has to satisfy the Hilbert—Bernays derivability conditions D and
Dy. Dy is the formalized semi—representability condition for the theorem predicate
[theo(X) = theo(theo(X))], whereas D, is the provable closure under modus ponens
[theo(X > V) > (theo(X) = theo(Y))]. The algorithm makes use of these conditions as
rules with one additional heuristic to exploit Dy: if theo(F) is the goal and F, as a conse-
quent of a conditional (or biconditional), is a strictly posttive subformula of an available
purely implicational formula, apply D repeatedly and try to extract theo(F).

Proof.

L. ZF*[-(theo(G) <-> ~G)) _ Premise’
2. ZF*|-(zf*cons <-> ~(theo(G) & theo(~G)))  Premise
3. NOT(ZF*|-(G)) Premise
4. | ZF*|-(zf*cons) Assumption
—
5.1~ (G) , Assumption
F I ——
6. |1 (theo(G) <-> ~G) » ProvE 1
*7. |1 theo(G)) IffEL 6, 5

7 Notice that the diagonal lemma is used here in a propositionally equivalent form; the current algorithm does
not find the proof, when it is given in its standard form.
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*8. |! theo(theo(G)) Der; 7
*9. |! theo(theo(G)) =>theo(~G)) Der, 6
': *10. |! theo(~G). ImpE 9, 8
: *11. |! theo(G) & theo(~G) Andl7, 10
] *12. |! (zf*cons <-> ~(theo(G) & theo(~()))  ProvE 2
*13.|! zf*cons ProvE 4
*14. |! ~(theo(G) & theo(~G)) IffEL 12, 13
; *15. |G o NotE 5, 11, 14
16. | ZF*|-(G) Provl 15
17. NOT(ZF*|-(zf*cons)) Notl4,17,3 O

This argumént made use of the 'special character of the Godel sentence G—in order to
obtain the two conjuncts of line *11. Instead, one can exploit the elegant way of proceeding
made possible by Lib’s theorem in [14]:

For all sentences F: ZF* |-(theo(F) > F) IFF ZF*|-(F).

L8b’s theorem expresses that a sentence F is provable in ZF* if and only if its reflection
Jformula (theo(F) - F) can be established in ZF*. Consider a refutable sentence H (i.e.,
a sentence whose negation is provable in ZF*) and assume that ZF* is consistent; then H
is not provable in ZF*. L&b’s theorem implies that the corresponding reflection formula
(theo(H) = H) is not provable either. Thus, the second incompleteness theorem amounts
to establishing NOT(ZF*|-(zf*cons)) from the premises NOT(ZF*|-(theo(H) > H )),
ZF*|-(zf*cons<-> ~(theo(H) & theo(~H))), and ZF*|-(~H). That is done in the next

proof.
Proof.
1. NOT(ZF*|-(theo(H) = H)) Premise
2. ZF*|-(zf*cons <-> ~(theo(H) & theo(~H))) Premise
3. ZF*|-(~H) Premise
4. | ZF*|-(zf*cons) Assumption
—
*5. |1 theo(H) Assumption
e
6. | ~(H) Assumption
] [ ——
*7. Y| theo(~H)) Rep 3
*8. |!] theo(H) & theo(~H) Andl5,7
*9. I (zf*cons <-> ~(theo(H) & theo(~H))) ProvE 2
*10. Y] zf*cons ProvE 4
11 Y ~(theo(H) & theo(~H)) IffER 9, 10
12, 'H NotE 6, 8, 11
“13. | theo(H) > H ImpI§, 12
[4. | ZF*)-(theo(H) = H) Provl 13

15. NOT(ZF*|-(zf*cons)) Notl 4, 14,1 O
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This proof of the second incompleteness theorem uses Lb’s Theorem only in the
discussion leading up to the precise derivational problem. In Appendix A the preliminary
considerations are, incorporated into the proof; there we also show an elegant machine

proof of Lob’s Theorem. '

4. Comparisons

A number of researchers have pursued goals similar to ours, but with interestingly
different programmatic perspectives and strikingly different computational approaches.
We focus on work by Ammon [1], Quaife [15], Bundy et al. [5] and Shankar [17]. We

Airst discuss Ammon’s and Quaife’s work, as theirs is programmatically closest to ours:
Ammon aims explicitly for a fully automatic proof of the first incompleteness theorem,
-and Quaife establishes the incompleteness theorems and L&b’s theorem in a setting that is
similarly “abstract” as ours. :

In his 1993 Research Note An automatic proof of Gédel’s incompleteness theorem,
Ammon describes the SHUNYATA program and the proof it found for the first
incompleteness theorem. SHUNYATA’s proof is structurally identical with the proof in
Kleene's book Introduction to Metamathematics (pp. 204-8); the latter proof is discussed
in great detail in Sections 4 and 5 of Ammon’s note. Two main claims are made: (i) Godel’s
undecidable sentence is “constructed” by the program “on the basis of elementary rules
for the formation of formulas”, and this is taken as evidence for the subsidiary claim
(on p. 305) that the program “implicitly rediscovered Cantor’s diagonal method”; (ii) the
proof of its undecidability is found by a heuristically guided complete proof procedure
involving Gentzen’s natural deduction rules for full first-order logic. The first claim (made
on p. 291 and reemphasized on p. 295) is misleading: the Godel sentence is of course
constructible by the elementary rules for the (suitably extended) language of number
theory, but that the formula so constructed expresses its unprovability has to be ensured
by other means (and is “axiomatically” required to do so by Ammon’s definition 3 and
lemma 1).% As to the second claim (made on p. 294), the paper contains neither a logical
calculus nor a systematic proof procedure using the rules of the calculus. What one finds
are local heuristics for analyzing quantified statements and conditionals together with
directions to prove the negation of a statement, i.e., to use the not introduction rule. These
latter directions are quite open-ended, as there is no mechanism for selecting appropriate
contradictory pairs. (Cf. Ammon’s discussion of the “contradiction heuristic” on p. 296.)

In 1988 Quaife had already published a paper on Automated proofs of Lob’s Theorem
and Gédel’s two incompleteness theorems. The paper presents proofs of the theorems
mentioned in its title? “at a suitable level of abstraction” — as the author emphasizes on
p. 219 — “from the underlying details of Godel numbering and of recursive functions”.

& our assessiment of this claim is in full agreement with that found in the Letter to the Editor by Briining et al.
3.

9 Quaife establishes only the unprovability of G, not of its negation under the assumption of w-consistency. On
p- 229 he asserts, “With the right axioms, its proof [i.e., the other half of the first incompleteness theorem, S&F)
could be reproduced about as easily as the principal half above”,
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The suitable level of abstraction is provided by the provability logic K4. That well-
-known logic contains as special axioms the derivability conditions and as its special rule
(beyond modus ponens) the rule of “necessitation™; the additional rule corresponds to the
semi-representability of the theorem predicate. In order to make use of the resolution
theorem proving system ITP, the first-order meta-theory ‘of K4 is represented in I'TP
by five “clauses”, which are listed in Appendix C. Four of the clauses correspond to
the axioms and rules just mentioned, whereas the very first clause guarantees that- all
tautologies are obtained. The tautologies are established by “applying properly specified
demodulators” and transforming given sentential formulas into conjunctive normal form;
the underlying procedure is complex and involves particular weighting schemes. Quaife
illustrates the procedure by presenting on pp. 226~7 a derivation of a “reasonably complex
tautology”’; the derivation uses a sequence of 73 demodulation steps. Quaife concludes the
discussion of this derivation by saying: “ITP can also be asked to print out the line-by-
line application of each demodulator, but that detailed proof is too long for this article”.
We present t_his tautology and its direct (and easily found) natural deduction proof in
Appendix C,

In contrast to Ammon’s paper, we find here a conceptually -and technically
straightforward meta-mathematical and logical set-up: representability and derivability
conditions are axiomatically assumed, and the logical inference machinery is precisely and
carefully described. However, it is very difficult to understand, how the syntactic context
of axioms, theorems and assumptions directs the search in a way that is motivated by the
leading ideas of the mathematical subject.!? The proofs use in every case “axioms and
previously proven theorems” in addition to the standard hypotheses for the theorem under
consideration. It is clear that the “previously proven theorems” are strategically selected,
and it is fair to ask, whether the full proof — from axioms through intermediate results to the
meta-mathematical theorems ~ should be viewed as “automated”’ or rather as “interactive”
with automated large logical steps. So the direct computational question is, would proofs
of the main theorems be found, if only the axioms were available?

The answer is most likely “No”. OTTER, the resolution theorem prover that developed
out of ITP, was not able to prove, under appropriately similar conditions, the full first
incompleteness theorem in 1996; that is reported in Bundy, Giunchiglia, Villafiorita
and Walsh’s paper An incompleteness theorem via abstraction.!! It was precisely this
computational problem that motivated their paper, namely to show how “abstraction” can
be useful to attack it. They present a proof of Godel’s theorem, where the real focus is
not on the particular meta-mathematical proof, but rather on the process of abstraction
and refinement that aids proof planning. This process is not a fully automated one, since
both the choice of the abstraction and the subsequent refinement of the abstract proof
into the original language require external guidance. While we share the ultimate goal of
limiting the search space for mathematical proofs by “abstraction”, their semi-automated
abstraction process is a very different, though complementary approach.

10 A similar reservation is articulated by Fearnley-Sander in his review [9] of Quaife’s book {16].
o p. 10 they write: “This proof [of the full first incompleteness theorem; S&F] turns out (o be a considerable
challenge to an unguided theorem prover. We have given these axioms to OTTER (v. 3.0) ... but it blew up”.
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The three approaches we have been discussing are as “abstract” as ours i the sense
that the diagonal lemma, the representability condition and, in Quaife’s and our case, the
derivability conditions are taken for granted. Shankar’s book Metamathematics, Machines,
and Gddel’s Proof focuses on an interactive proof of (the Rosser version of) the first
incompleteness theorem.!? The explicit goal was to find out, whether the fyll proof
could in practice be checked using a computer program, i.e., the Boyer~Moore theorem
prover. In the preface to his book. Shankar points out that “A secondary goal was to
determine the effort involved in such a verification, and to identify the strengths and
weaknesses of automated reasoning technology”. The crucial meta-mathematical task and
most significant difficulty consisted in verifying the representability ‘conditions—for a
particular theory (the system -Z3 for number theory in Cohen’s book) and a particular
way of making computability precise (via McCarthy’s Lisp). That required, of course, a
suitable formalization of all meta-mathematical considerations within, what Shankar calls
on p. 141, “a constructive axiomatization of pure Lisp”. In Sections 5.4 and 5.5 Shankar
gives a very informative analysis of, and an excellent perspective on, the work presented.

Moving back from interactive theorem proving to automated proof search, it is clear
that the success of our search procedure results from carefully interweaving mathematical
and logical considerations, which le'ad from explicitly -formulated principles to a given
conclusion. Proofs provide explanations of what they prove by putting their conclusions
in a context that shows them to be correct. This need not be a global context providing
a foundation for all of mathematics, but it can be a rather more restricted one as here for
the presentation of the incompleteness theorems. Such a local deductive organization is the
classical methodology of mathematics with two well-known aspects: the formulation of
principles and the reasoning from such principles; we have illustrated only the latter aspect
by using suitable strategic considerations and appropriate heuristic “leading mathematical
ideas”,

The task of considering a part of mathematics, finding appropriate basic notions, and
explicitly formulating principles — so that the given part can be systematically developed
~ is of a quite different character. For Dedekind the need to introduce new and more
appropriate notions arises from the fact that human intellectual powers are imperfect. The
limitation of these powers leads us, Dedekind argues in [8], to frame the object of a science
in different forms or different systems. To introduce a notion, “as a motive for shaping the
Systems”, means in a certain sense to formulate a hypothesis‘concerning the inner nature
of a science, and it is only the further development that determines the real value of such
a notion by its greater or smaller efficacy (Wirksamkeit) in recognizing general truths,
In the part of meta-mathematics we have been considering, Hilbert and Bernays did just
that: their formulation of representability and derivability conditions ultimately led to more
“abstract” ones and, in particular, to the principles for the provability logic K4 and related
systems; see [2].13

121 addition, Shankar provides a “mechanical proof” of the Church-Rosser Theorem in Chapter 6.

B3 a different, though closely related case, Hilbert and Bernays succeeded in providing “recursiveness
conditions” for the informal concept of calculability in a deductive formalism; that was done in a supplement
of the second volume of (heir Grundlagen der Mathemarik.



1332 _ W. Sieg, C. Field/ Annals of Pure and Applied Logic 133 (2005) 319-338

5. Cbn‘cludihg remarks

'No matter how one might mechanize an attempt of gaining such a principled deeper '
-understanding of a part of mathemaucs, the. considerations for a systematic and efficient
automated development would still be central. In our given meta-mathematical context,
there is an-absolutely natural step to be taken next. As we emphasized earlier, there is no
conflict or even sharp contrast between proof search and proof planning: proof search is
hierarchically and heunstlcally organized through the us¢ of “axioms” and their subsequent
verification (or refutation). The guiding idea for verification in the intercalation approach
 is to generate sequences of formulas, reduce differences, and arrive ultimately at syntactic
identities. Such difference reduction also underlies the : techniques for inductive theorem
proving that have been developed by Bundy et al. in their recent book [4]. We conjecture
that those techniques can be seamlessly joined with the intercalation method to take the
next step and prove the representability conditions. The strictly formal proof in TEM rhight
then be transformed into a ZF* proof of the first derivability condition, automatically. From
a different, more proof-theoretic perspective one might wish to compare the intercalation
method for natural deduction calculi with appropriately formulated methods for sequent
calculi with and without cuts. That might lead to interesting heuristics for choosing suitable
cut formulas (to make proof search more efficient).!
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Appendix A. L6b’s theorem

The context of the the01em is given in Section 3. Here we present an argument obtained
by our automated proof search and re-prove the second incompleteness theorem; in the
latter proof, the appeal to L&b’s theorem is explicitly built into the argument. In order to
prove Lob’s theorem in TEM, one faces two claims, namely,

(1) ZF*|-(theo(F) -> F) IMPLIES ZF*|-(F)
and
(i1) ZF*|-(F) IMPLIES ZF*|-(theo(F) -> F).

The last claim is immediate, whereas the first is difficult: its proof uses the instance
of the diagonal lemma for the formula (theo(x) -> F). Here is the precise derivational
problem at the heart of Lob’s theorem: ZF*|-(F) can be proved from the premises
ZF*|-(theo(F) -> F) and ZF*|-(L <-> (theo(L) -> F)).

14 This issue was suggested as a good research direction by an anonymous referee.
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Proof.
1. ZF*|-(L <-> (theo(L) -> F))
2. ZF*|-(theo(L) -> (theo(theo(L)) -> theo(F)))
3. ZF*|-(theo(L) -> theo(theo(L)))
4. | ZF*|-((theo(F) -> F))
[
*5. ! theo(L)
.
*6. |! theo(L) -> (theo(theo(L)) -> theo(F))
*7. |! (theo(theo(L)) -> theo(F))
*8. [! (theo(L) -> theo(theo(L)))
*9. |! theo(theo(L))
*10. |! theo(F)
*11. |t (theo(F) -> F)
“12. | F
*13. | (theo(L) -> F)
14, | (L <-> (theo(L)-> F))
*15. | L
16. | ZF*|-(L)
*17. | theo(L)
*18. | F
19. | ZF*|-(F)
20. (ZF*|-((theo(F) -> F)) IMPLIES ZF*-(F))
21. | ZF|-(F)
[
*22. |t theo(F)
.
*23. I F
*24. | (theo(F) -> F)
25. | ZF*|-((theo(F) -> F))
26. (ZF*|-(F) IMPLIES ZF*|-((theo(F) -> )
27. (ZF*|-((theo(F) -> F) IFF ZF*|-(F))

L&b’s Theorem.

a fairly general character;

proofs of Léb’s theorem, which differ in the presentation of the
In the first proof the conditions are formulated as premises and
are instantiated for this problem; They enter the search through the standard extraction
proof heuristics guide their application. The heuristics were
they are designed to apply each
are very similar, differing mainly
ecessary in thefirst proof to make
We present only the first proof.’

Premise
Premise
Premise
Assumption

Assumption

ProvE 2
ImpE 6, 5
ProvE 3
ImpE g, 5
ImpE 7,9
ProvE 4
ImpE 11, 10
Impl 5, 12
ProvE 1
IffEL 14, 13
ProvI 15
Rep 16
ImpE 13, 17
ProvI 18
Impl 4,19
Assumption

Assumption
ProvE 21

Impl 22, 23
ProvI 24

ImplI 21, 25

IffI20,26 O

ompleteness theorem with the explicit use of
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Proof.
- 1. ZF*CONS . ‘ Premise
2. ZF*|-(~(H)) v Premise
3. (ZF*CONS IFF NOT((ZF*I (H) AND ZF*I (~(HDY) Premise
4, ZF*|-(zf*cons <-> N((theo(H)&theo(N(H))))) Premise
5. (ZF*|-(H) IFF ZF*|- ((theo(H) -> H))) Premise -
6. |ZF*|-(zf*cons) , ' Assumption
F—
‘IJNOT«ZFH(H)ANDZFH(m(HDn IffER 3, 1
*8. |! theo(H) - Assumption
[lrmm e
*9. ~(H) Assumption
|| — :
*10. |![(zf*cons <-> ~((theo(H) &theo(~(H))))) ProvE 4
*11. |Yzf*cons ProvE 6
*12. |l[~((theo(H) & theo(~(H)))) HfER 10, 11
*13. |!{theo(~(H)) Rep 2
*14. [Y(theo(H) & theo(~(H))) : AndI 8, 13
*15. 'H NotE 9,14, 12
*16. I(theo(H) -> H) Impl 8, 15
17. |ZF*|-((theo(H) -> H)) Provl 16
18. |ZF*|-(H) IffEL 5, 17
19. [(ZF*|-(H) AND ZF*|-(~(H))) ‘ Andl 18,2
20. NOT(ZF*|-(zf*cons)) Notl 6, 19,7 O
Appendix B

The square root of 2 is not rational. The logical search algorithm uncovers directly the
following proof of the claim from the premises:

(1) /2 is rational <->(E x)(E V2% =y & ~(EZ)(z|x &ziy)

() (Ax)(Ay)(2*x? = y*-> 2x & 2y)

(3) (A (AN2*% = y->2%27 = y?)

The universe of discourse consists of the set of all reals or just the algebraic ones, but the
range of the quantifiers consists just of the sort of positive integers. Here is the translation

of the automatically generated proof; “translation”, as the parser understands only a more
restricted language.

V2 is rational <-> (E x)(E y)(/2*x = y & ~(Ez)(z]x &zly)) Premise
2. (AX)(Ay) @*x2 = 3?5 2x &2|y) Premise



W. Sieg, C. Field/ Annals of Pure and Applied Logic 133 (2005) 319-338 335

(S

(AX)(Ay) (V2*x = y-> 2552 = 2 Premise

4. | /2 is rational Assumption
: '-__-_----;__ ) .

5. [ (Ex)(Ey) (v2*x = y & ~(Ez)(zlx & z|y)) IffER 1, 4

6. 1 (Ey) (V2*u = y & ~(Ez)(z|u &zly)) Assumption

N _
7. 1 (/2%u = v & ~(Ez)(z)u & z|v)). _ ‘ Assumption
1] E— S '

8. N AN U =y2>20u&2ly) AlIE 2

9. I (2*u? = v?-> 20u & 2v) , AlIE 8
10. I (An)(V2*u = y-> 2*u? = y?) AlIE 3

T (V2% = v-> 2442 = ) , “AlIE 10
1291 /2% = v AndEL 7
13. 1] 2%u? = 2 ImpE 11, 12
14. ['2]u&2|v ImpE 9, 13
15. 11| (E2)(z|u & z|v) : ExI 14

16. 1] ~(Ez)(zlu & z|v) AndER 7
17. 1 L L115,16
18. |1 L , ExE 6,7, 17
19. | L ExE5, 6, 18

20. ~(4/2 is rational) Notl 4,19 (O

L is taken as a placeholder for an appropriate contradiction, say, (P & ~P),

Appendix C
In [15, pp. 226-227], this “reasonably complex tautology” is presented:
[(P>(Q>R) > Q> (R>$) > (0> (P> SN

Its proof, however, is considered to be too long for incorporation into the article. In our
natural deduction framework the proof is absolutely canonical and direct; here it is—in
twelve lines:

L (P->(Q->R)) : Assumption
[—

2. 10> (R->9) Assumption

e

3000 Assumption
e

4. 1rprp Assumption
[ A —

511 1(R->5) ImpE 2, 3

6. [11(Q->R) ImpE 1,4

7O VR ImpE 6, 3

g |1]!s ImpE 3,7
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9. [1[(P->5) | | | ImpL 4, 8
10 11(@->(P->5)) Tmpl 3, 9
11 | ((Q-> (R-> §)-> (Q-> (P-> 5) ImpI 2, 10

12 (P->(Q->R))->((@->(R->8))- =>(Q->(P->8)))) Impl 1,11 [

As mentioned in Section 4, Quaife’s framework is a formulatlon of the first-order meta-
theory of K4 within ITP. The predicate ThmK4(x) expresses that the formula x is a theorem
of K4. Here are the clauses generating theorems (from p. 223):

(ITPAI) If taut(x) then ThmK4(x);

(TP.A2)  ThmK4((b(x-> y) -> (b(x) > b))

(ITP.A3)  ThmK4(b(x)-> b(b(x))); -

 (ITPR1)  If ThmK4((x -> y)) & ThmK4(x) then ThmK4(y);
(ITPR2)  If ThmK4(x) then ThmK4(b(x)).

Al guarantees that all tautologies are theorems; A2 and A3 correspond fo the derivability
conditions; R1 is modus ponens, and R2 expresses the semi- -representability of the theorem
predicate. :

Appendix D

‘Here we present two further computer-generated proofs surrounding the incompleteness
theorems. The first claim is a version of the first half of the first incompleteness theorem,
asserting the unprovability of the reflection formula for the Gédel sentence.

(1) ZF*CONS IMPLIES NOT(ZF*|-(theo(G) -> G)).

Proof. ‘

1. (ZF*CONS IFF NOT((ZF*|-(G) AND ZF*|-(~(G))))) Premise

2. ZF*|-((G <-> ~(theo(G)))) Premise

3. |ZF*CONS Assumption

I
4. |1 ZF*|-((theo(G) -> G)) Assumption
[ ——

5. ' NOT({ZF*|-(G) AND ZF*|-(~(G)))) IffER 1, 3
*6. |1 (G <-> ~(theo(G))) ‘ ProvE 2
*7. ! |theo(G) Assumption

[H-mmmmmmmnen

*8. |1 (theo(G)-> G) - ProvE 4

.G ImpE §, 7
*10. 1] ~(theo(G)) IffER 6, 9
11 |1 ~(theo(G)) Notl 7,7, 10
12. 1 G ’ IEL 6, 11

13. 1 ZF*)-(G) Provl 12
4.0 G Assumption

“15. Y theo(G) Rep I3



W Sieg, C. Field / Annals of Pure and Applied Logic 133.(2005) 319-338 337

*16.. |!] ~theo(G) ' . IffER 6, 14
*17. 1 ~(G) o NotI 14,15,16
18. |1 ZF*|-(~(G)) Provl 17
19.- ! (ZF*|-(G) AND ZF*|-(~(G))) AndI 13, 18
20. | NOT(ZF*|-((theo(G) -> G))) Notl 4, 19,5

21. (ZF*CONS IMPLIES NOT(ZF*|-((theo(G) -> G))) ImpI3,20 O

The argument is perfectly canonical—up to the extraction step in line *12; at this point G
could have been extracted from the formula (theo(G) -> G) in line 4. The resulting proof
is “symmetric” to the given one, N : }

The second claim asserts that for any refutable sentence R, the formula expressing
its unprovability, ie., ~(theo(R)), is in ZF*: ‘equivalent to 'its reflection formula
(theo(R) -> R)). ' :

(ii) ZF*[-(~(R)) IMPLIES ZF*I-((N(théo(R))<->(th'eo(R) -> R)).

Proof.
1. ZF*|-(~(R)) Premise
*2. |~(theo(R)) Assumption
—
*3. {l'theo(R) . Assumption
o |
*4. [1~(R) Assumption
] R —— ‘
*5. 'R NotE 2,3
“6. |(theo(R) -> R) ImpI 5
*7. (~(theo(R)) -> (theo(R) -> R)) Impl 6
*8. |(theo(R) -> R) Assumption
[—
*9. ! theo(R) Assumption
RS
*10. [ ~(R) ProvE |
*11. 'R ImpE 8, 9
*12. |~(theo(R)) Notl 10, 11
*13. ((theo(R) -> R) -> ~(theo(R))) ImpI 12
*14. (~(theo(R))<->(theo(R) -> R)) Iffr 7, 13
15. ZF*I—((N(theo(R))<->(theo(R) -> R))) Provl 14 O
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