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Abstract 

Feature induction is used to reduce the complexity of the model 
search space of a Bayes network.  The Bayes net is used to model 
student behavior in an on-l ine course.  Specifically, the frequency 
of student self-assessments is used to predict quiz performance.  By 
moving most of the search from the model space to the feature 
space, prior knowledge and bias can be introduced and the search 
problem constrained. 

1 Introduction 

Bayesian networks are frequently used to model the interactions between variables 
[1].  They provide a useful representation of the independence assumptions of the 
model.  These independencies are crucial in making inference and related 
applications tractable.  One common problem is for a researcher to have some idea 
of which variables, or features, he thinks are involved in a process, but is unsure 
exactly how these features interact with one another.  Specifically, he does not know 
where the independencies lay.  Some features may not be relevant at all  to the 
process, and some may only have a very small effect.  This can be viewed as a 
model selection problem: deciding which variables to include in the model, and 
precisely describing the level of their interaction. 

One popular method for performing model selection is to fix the variables or nodes 
of the network and to search over possible configurations of edges.  This suffers 
from the fact that it is not always clear where these nodes come from in the first 
place.  If a search algorithm is forced to consider a possibly spurious node, it might 
tweak the entire network just to accommodate a bad assumption. 

In this work, we instead begin with a relatively small set of core features and grow 
this set, through a process of inductive feature search, until a satisfactory model is 
found.  This benefits from the fact that unhelpful or deleterious initial node 
selections can be pruned out by the algorithm and the feature search guided towards 
more promising areas. 

 



 

2 Problem 

Many applications produce copious amounts of low-level log data.  In particular, we 
are interested in examining the data produced by students using an on-line course.  
Intuitively, researchers believe many interesting, and potentially useful trends and 
patterns are contained in these logs.  In fact, it has been veri fied that carefully hand-
made features, based on log data, can be used to predict student performance [2].  
Unfortunately, researchers have neither the time nor patience to go through all these 
logs, by hand, to find the useful trends.  An obvious solution is to have this search 
done automatically, by a computer.  Unfortunately, the unstructured, low-level 
nature of the data makes it very difficult to design an algorithm that can tie the data 
together into models of features and processes the researcher and his community are 
interested in and can understand.  This is the problem this research tries to solve. 

3 Model  

The basic idea behind our approach is to search for complicated features, and put 
these into a simple model, rather than putting simple features into complicated 
models.   The basic features, or atoms, that we start with are l isted in Table 1.  
These are raw data fields that are collected natively by the logging software. 

 

Table 1: Atomic features 

NAME DESCRIPTION 

User_id (Nominal) Unique user identifier 
Module_id (Nominal) Unique module identi fier 

 Assesses (Ordinal) Number of self-assessment quizzes taken 
by this user in this module 
 Quiz_score (Ordinal) (Dependent variable) % of quiz questions 
answered correctly by this student in this module 
 

 

For our experiment, we tried to learn features that would help predict Quiz_score.  
Since our search complexity was taking place in feature space, we could assume a 
simpler graphical model.  We chose a two node Bayes network, which we 
implemented as l inear regression.  This network is shown in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1: Feature interaction complexity is hidden from outcome variable. 
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As is shown in the f igure, the complexity of the interaction between the four atomic 
features is hidden by the learned feature F.  That is, given F, Y does not need to 
know about X1-X3.  This allows for a simple two-node network between F and Y 
that models the process we are interested in.   

4 Method 

4 .1  Pred ica te s  

We think of features as functions of the data.  Raw data is a table of atomic features: 

       Table 2: Sample data 

X1:User_id X2:Module_id X3:Assesses Y:Quiz_score 

Alice  module_1 12  86 

Bob  module_1  14  74 

Alice  module_2  18  92 

Bob  module_2  13  87 
 

This data can then be fi ltered into subsets through the process of predication. A 
predicate is a logical statement that is applied to each row of the raw data.  It selects 
the subset of that data which satisfies this statement.  For example, i f we had the 
predicate: User_id=Alice, rows one and three would be selected.  We could 
l ikewise fi lter on User_id=Bob.  This would completely partition the data.  These 
predicates can be formed exhaustively and automatically based on the defini tion of 
the atomic features. 

4 .2  Ca lcu la to rs  

Once a predicate has been applied to the raw data, a function can be applied to the 
resulting fi l tered subset.  We call these functions calculators.  A calculator can 
perform various operations over the fields of the selected data.  For instance, we 
might define a statistical calculator that returned the mean of the Assesses field.  Or 
we could define a count calculator that simply returned the number of rows in the 
subset selected by the predicate.  The specific definition of these calculators is 
guided by domain knowledge.  For instance, educational research theory may say 
that timing-effects follow a log-scale decay.  Thus, instead of a simple subtraction 
calculator, we may look at log(difference). 

 

Table 3: Calculators 

NAME DESCRIPTION 

Mean (Statistical) Calculates the mean over an ordinal feature 
Sum (Statistical) Calculates the sum over an ordinal feature 

 Max (Statistical) Calculates the max over an ordinal feature 
 Min (Statistical) Calculates the min over an ordinal feature 
 



 

4 .3  Fea tures  

Once we have applied our calculator to the fi ltered data, the result is a new feature.  
This feature is precisely, and entirely, defined by the predicate and calculator that 
produced it.  For example, i f we predicated on Module_id = 1, and Module_id = 2, 
and then applied the mean calculator, we would create a new feature: 
mean_assessments_per_module.  In terms of the sample data given before, this 
feature, F: mean_assesses, would look l ike: 

 

Table 4: Feature construction over sample data 
X1:User_id    X2:Module_id X3:Assesses   F:Mean_assess  Y:Quiz_Score 

Alice      module_1        12      13     86 

Bob      module_1         14      13     74 

Alice      module_2         18      15.5     92 

Bob      module_2         13      15.5     87 

 

The feature can then be evaluated for fitness, based on the model being used, and 
then either be discarded, or incorporated into the data.  This process continues 
iteratively, with high quali ty new features being appended to the data set after each 
round, and becoming atomic features in the next round from which to create ever 
more complicated features.  Since all features are per module, the data can be 
combined. 

5 Experiment 

For the experiment we looked at whether we could discover complex predictive and 
interpretable features from raw data, given an appropriate model. 

5 .1  Da ta  

We began with real data col lected from students participating in the Open Learning 
Initiative [http://www.cmu.edu/oli/].  For each student, for each module, we 
collected the three atomic features user_id, module_id, and assessments.  We also 
collected their quiz_score for that module. 

5 .2  Alg o r i th m 

The naïve approach to discovering new features would be to exhaustively split the 
data based on all instantiations of the predicates, and then apply all calculators to all  
the subsets created by those predicates.  The problem with this solution, of course, 
is that its complexity is super-exponential in the number of features.  Since we want 
to create an iterative method that can search deeply into the feature space, this wil l  
quickly blow-up and become intractable. 

Our solution is two-fold: fi rst, the atomic features are segmented into partitions. 
That is, again using a domain expert, all user-related features (such as the user’ s id, 
school, section, age, etc) are put into a logical bucket.  Similarly for all course 
related features, module related features, etc.  Then, the algorithm is applied 
greedily to each bucket, independently.  The k-best features are returned from each 
bucket, and then they are incorporated as raw features into another iteration of the 



 

algorithm.  In this way, the algorithm is able to explore both broadly and deeply, but 
with enough bias so as not to become entrenched in intractabil ity. 

Second, after each iteration within each sub-step, each feature is evaluated in terms 
of its predictiveness and interpretabil ity.  R^2 is used to score predictiveness, and 
the depth of nesting of the feature, in addition to the specific predicates and 
calculators used, contribute to its interpretabil i ty score (mean is more interpretable 
than max, predicating on user_id is more interpretable than predicating on 
time_zone). After each iteration, the features are scored, and the k features with the 
best score are graduated to the next iteration, the rest are pruned away. 

The definition of the score function is another critical lever in which we can 
incorporate and apply the theory already developed by the educational research 
community.  This is vital to the mission of this work, as it has been shown that the 
results of automated learning methods tend not to be incorporated by the 
communities they serve, despite their statistically demonstrated predictiveness, i f 
the community does not feel that its existing corpus of study has been used as a 
starting point for the work [3].  In other words, science is an iterative process, with 
the results of previous experiments informing not just the interpretation, but also the 
design and execution of subsequent studies.  It would not make sense, therefore, for 
machine learning techniques always to be applied de novo.  One of the crucial 
elements of this algorithm is the degree to which is allows for the leveraging and 
systematic inclusion of existing scienti fic knowledge. 

6 Results  

6 .1  Resu l t s  

Our experiment had two main goals: a machine learning goal of finding features 
which were predictive of student performance, and a scientif ic discovery goal of 
finding interpretable features which, taking into account existing scienti fic theory, 
also suggested new possibly scienti fically justi f iable features.   

6 .2  M a chine  Lea rn ing  

For this part of the experiment, we began by randomly splitting the data into two 
subsets: 80% into training data, and 20% into testing data.  We then applied our 
algorithm to the training data.  This returned the three best complex features.   

 
Table 5: Best discovered features 
 

Mean assessments per user, over all modules 

Total assessments per user, per module 

Max assessments per user, over all modules 

 

Each of these features was then used as the independent variable in a univariate 
generalized linear regression model, against the dependent variable quiz_score.  
Their fitness was evaluated using the R^2 metric (measuring the amount of deviance 
explained by each feature individually, relative to the null model).  These features 
(defined as the predicate and calculator used to create them, not the actual numerical 
values as calculated over the training data) were then calculated over the held-out 



 

testing data, and plugged into the linear models trained using the training data.  
Their cross-validation error was then recorded, and compared the error of the null  
model.  The percentage decrease in cross validation root mean squared error was 
then reported. 

 

Figure 2. Evaluation of learned features. 

The important thing to note here is that our algorithm actually did automatical ly 
recover features with some predictiveness.  This is important because an algorithm 
that found scienti fically interpretable, but predictively meaningless features would 
be of l i ttle value.  In order for our technique to be useful, it must increase, at least 
minimally, our abil ity to explain performance, not just semantically, but also in a 
statistically significant way.   

6 .3  Sc ient i f i c  D i sco v ery  

For this part of the evaluation, we took a closer look at the semantic interpretation 
of the features discovered.  For our algorithm to be val id, it should both reinforce 
our existing beliefs about which factors predict student performance, and also 
suggest new features that we have either had intuition about, but not been able to 
formulate precisely in terms of the raw data, or which we have never considered 
before.  In this experiment, mean_assessments_per_user_over_all_modules is one 
of these kinds of features.  Semantically, this feature could represent the average 
“ introspectiveness”  of a given user.  That is, the more self-assessments a student 
takes, on average, compared to her classmates, could give an index into that 
student’ s propensity for evaluating herself.  She might feel insecure in her mastery 
of the material.  This would suggest a negative correlation with quiz_score, that is, 
the less mastery a student has, the more assessments she take, and the poorer her 
final quiz score.  In fact, this is the opposite of what we find: a positive correlation.   

Thus, presented with this evidence, an educational researcher might be forced to 
rethink his theory: perhaps those students who are most motivated to study, are also 
most motivated to evaluate their mastery.  They keep reviewing the material unti l  
they perform well on the self-assessments, and only then proceed to the final quiz, 
on which they also do well.  Another plausible hypothesis is that taking self-
assessments actual ly helps students master the material, which leads to better quiz 
performance.  It is important to note that these features and their correlations to 



 

performance only suggest possible predictive relationships, not causal l inks.  They 
quanti fy the defini tion of semantic features in terms of the raw data, which is a 
critical prerequisite for the design and implementation of further experiments by the 
researcher to ful ly investigate these proposed models, including distinguishing 
causation and correlation. 

  

Figure 3.  Positive correlation between self-assessments and quiz performance. 

 

7 Conclusions  

The main goal of this project was to automatically discover useful, complex features 
in the context of a Bayes net model.  These features would at once elucidate the 
underlying structure of the raw data to the researcher, while at the same time hiding 
the complexity of this atomic structure from the network so that the features could 
be fed into even more complicated models without introducing intractable 
complexity.  This goal was achieved.   

In addition, by finding more complicated features that are sti l l  based on intuitive 
atoms, we produce models that are descriptive, but sti l l  interpretable and 
understandable.  Thus we work not only towards models with better performance, 
but also towards the perhaps more important goal of furthering scientists’  
understanding of the features and relationships underlying the processes they are 
investigating [4].    

We also found that finding novel, useful features is a difficult task.  We used the 
competing biases of predictiveness and interpretabil i ty to guide our search through 
the feature space, while staying keenly aware of the trade-off between these two 
goals.  Namely, predictiveness is useful, but often times not readily semantically or 
scienti fically paresable.  And interpretabil ity, while more likely to be incorporated 
by scientists into theory, i f  not predictive, may actual ly move the state of the art 
backwards.  A key result of this work was finding a way to incorporate and balance 
these competing goals. 



 

 

8 Future Work 

As we move towards data with possibly more complicated underlying model 
structure, we may need to incorporate more atomic features and more iterations of 
feature formation.  Since the running time of the algori thm is super-exponential in 
the number of features, this raises the very immediate specter of intractabil ity.  To 
this end, we will need to develop methods for guiding and limiting the exploration 
of the predicate and calculator space intel l igently, rather than relying on an 
exhaustive enumeration approach. 

8 .1  B e t t er  & Fa ster  Sea rch  

Now that we have established that relatively shal low features can be discovered, we 
need to demonstrate that more complicated features can be discovered from real 
data.  Specif ically, we are interested in both searching more widely within each 
partition of features (that is, increasing the breadth of the partition) and more deeply 
(that is, running more i terations of nesting features within each other).  Obviously, 
each small  increase in either of these dimensions greatly increases the number of 
calculations needing to be performed.  One mitigation of this increase would be the 
construction of decomposable feature scores, that is, scores that do not have to be 
computed de novo for each feature, but instead could be composed of other, already 
calculated feature scores.  This would allow us to incorporate more features into the 
search, whi le only incurring an incremental increase in running time. 

8 .2  M o re  Interpre ta b le  Fea tures  

Along these same lines, more intell igent partitioning of the feature space could 
reduce complexity while also increasing the quality of the features returned.  Since 
this partitioning is one of the key biases we have into the search space, it is 
important to explore different ways of dividing features so as to minimize search 
complexity while maximizing the predictive and descriptive power of our features. 

Finally, the interpretabil ity metric used in evaluating features could be further 
refined to better reflect prior beliefs.  That is, some features may gain or lose 
interpretabil ity when combined with others (e.g. day of week and time of day: doing 
homework at midnight on Monday is very different from midnight on Friday).  This 
is yet another lever that could be used to guide our search. 
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