

Feature Discovery in the Context of
Bayes Nets: An Inductive Approach

Andrew Arnold, Richard Scheines and Joseph E. Beck

Center for Automated Learning & Discovery
Carnegie Mellon University

Pittsburgh, PA 15213
{aarnold, joseph.beck}@cs.cmu.edu, scheines@andrew.cmu.edu

Abstract

Feature induction is used to reduce the complexity of the model
search space of a Bayes network. The Bayes net is used to model
student behavior in an on-l ine course. Specifically, the frequency
of student self-assessments is used to predict quiz performance. By
moving most of the search from the model space to the feature
space, prior knowledge and bias can be introduced and the search
problem constrained.

1 Introduction

Bayesian networks are frequently used to model the interactions between variables
[1]. They provide a useful representation of the independence assumptions of the
model. These independencies are crucial in making inference and related
applications tractable. One common problem is for a researcher to have some idea
of which variables, or features, he thinks are involved in a process, but is unsure
exactly how these features interact with one another. Specifically, he does not know
where the independencies lay. Some features may not be relevant at all to the
process, and some may only have a very small effect. This can be viewed as a
model selection problem: deciding which variables to include in the model, and
precisely describing the level of their interaction.

One popular method for performing model selection is to fix the variables or nodes
of the network and to search over possible configurations of edges. This suffers
from the fact that it is not always clear where these nodes come from in the first
place. If a search algorithm is forced to consider a possibly spurious node, it might
tweak the entire network just to accommodate a bad assumption.

In this work, we instead begin with a relatively small set of core features and grow
this set, through a process of inductive feature search, until a satisfactory model is
found. This benefits from the fact that unhelpful or deleterious initial node
selections can be pruned out by the algorithm and the feature search guided towards
more promising areas.

2 Problem

Many applications produce copious amounts of low-level log data. In particular, we
are interested in examining the data produced by students using an on-line course.
Intuitively, researchers believe many interesting, and potentially useful trends and
patterns are contained in these logs. In fact, it has been veri fied that carefully hand-
made features, based on log data, can be used to predict student performance [2].
Unfortunately, researchers have neither the time nor patience to go through all these
logs, by hand, to find the useful trends. An obvious solution is to have this search
done automatically, by a computer. Unfortunately, the unstructured, low-level
nature of the data makes it very difficult to design an algorithm that can tie the data
together into models of features and processes the researcher and his community are
interested in and can understand. This is the problem this research tries to solve.

3 Model

The basic idea behind our approach is to search for complicated features, and put
these into a simple model, rather than putting simple features into complicated
models. The basic features, or atoms, that we start with are l isted in Table 1.
These are raw data fields that are collected natively by the logging software.

Table 1: Atomic features

NAME DESCRIPTION

User_id (Nominal) Unique user identifier
Module_id (Nominal) Unique module identi fier

 Assesses (Ordinal) Number of self-assessment quizzes taken
by this user in this module
 Quiz_score (Ordinal) (Dependent variable) % of quiz questions
answered correctly by this student in this module

For our experiment, we tried to learn features that would help predict Quiz_score.
Since our search complexity was taking place in feature space, we could assume a
simpler graphical model. We chose a two node Bayes network, which we
implemented as l inear regression. This network is shown in Figure 1.

Figure 1: Feature interaction complexity is hidden from outcome variable.

Learned
Feature

F

Quiz
Score

Y

User_id

Module_id

Assesses

As is shown in the f igure, the complexity of the interaction between the four atomic
features is hidden by the learned feature F. That is, given F, Y does not need to
know about X1-X3. This allows for a simple two-node network between F and Y
that models the process we are interested in.

4 Method

4 .1 Pred ica te s

We think of features as functions of the data. Raw data is a table of atomic features:

 Table 2: Sample data

X1:User_id X2:Module_id X3:Assesses Y:Quiz_score

Alice module_1 12 86

Bob module_1 14 74

Alice module_2 18 92

Bob module_2 13 87

This data can then be fi ltered into subsets through the process of predication. A
predicate is a logical statement that is applied to each row of the raw data. It selects
the subset of that data which satisfies this statement. For example, i f we had the
predicate: User_id=Alice, rows one and three would be selected. We could
l ikewise fi lter on User_id=Bob. This would completely partition the data. These
predicates can be formed exhaustively and automatically based on the defini tion of
the atomic features.

4 .2 Ca lcu la to rs

Once a predicate has been applied to the raw data, a function can be applied to the
resulting fi l tered subset. We call these functions calculators. A calculator can
perform various operations over the fields of the selected data. For instance, we
might define a statistical calculator that returned the mean of the Assesses field. Or
we could define a count calculator that simply returned the number of rows in the
subset selected by the predicate. The specific definition of these calculators is
guided by domain knowledge. For instance, educational research theory may say
that timing-effects follow a log-scale decay. Thus, instead of a simple subtraction
calculator, we may look at log(difference).

Table 3: Calculators

NAME DESCRIPTION

Mean (Statistical) Calculates the mean over an ordinal feature
Sum (Statistical) Calculates the sum over an ordinal feature

 Max (Statistical) Calculates the max over an ordinal feature
 Min (Statistical) Calculates the min over an ordinal feature

4 .3 Fea tures

Once we have applied our calculator to the fi ltered data, the result is a new feature.
This feature is precisely, and entirely, defined by the predicate and calculator that
produced it. For example, i f we predicated on Module_id = 1, and Module_id = 2,
and then applied the mean calculator, we would create a new feature:
mean_assessments_per_module. In terms of the sample data given before, this
feature, F: mean_assesses, would look l ike:

Table 4: Feature construction over sample data
X1:User_id X2:Module_id X3:Assesses F:Mean_assess Y:Quiz_Score

Alice module_1 12 13 86

Bob module_1 14 13 74

Alice module_2 18 15.5 92

Bob module_2 13 15.5 87

The feature can then be evaluated for fitness, based on the model being used, and
then either be discarded, or incorporated into the data. This process continues
iteratively, with high quali ty new features being appended to the data set after each
round, and becoming atomic features in the next round from which to create ever
more complicated features. Since all features are per module, the data can be
combined.

5 Experiment

For the experiment we looked at whether we could discover complex predictive and
interpretable features from raw data, given an appropriate model.

5 .1 Da ta

We began with real data col lected from students participating in the Open Learning
Initiative [http://www.cmu.edu/oli/]. For each student, for each module, we
collected the three atomic features user_id, module_id, and assessments. We also
collected their quiz_score for that module.

5 .2 Alg o r i th m

The naïve approach to discovering new features would be to exhaustively split the
data based on all instantiations of the predicates, and then apply all calculators to all
the subsets created by those predicates. The problem with this solution, of course,
is that its complexity is super-exponential in the number of features. Since we want
to create an iterative method that can search deeply into the feature space, this wil l
quickly blow-up and become intractable.

Our solution is two-fold: fi rst, the atomic features are segmented into partitions.
That is, again using a domain expert, all user-related features (such as the user’ s id,
school, section, age, etc) are put into a logical bucket. Similarly for all course
related features, module related features, etc. Then, the algorithm is applied
greedily to each bucket, independently. The k-best features are returned from each
bucket, and then they are incorporated as raw features into another iteration of the

algorithm. In this way, the algorithm is able to explore both broadly and deeply, but
with enough bias so as not to become entrenched in intractabil ity.

Second, after each iteration within each sub-step, each feature is evaluated in terms
of its predictiveness and interpretabil ity. R^2 is used to score predictiveness, and
the depth of nesting of the feature, in addition to the specific predicates and
calculators used, contribute to its interpretabil i ty score (mean is more interpretable
than max, predicating on user_id is more interpretable than predicating on
time_zone). After each iteration, the features are scored, and the k features with the
best score are graduated to the next iteration, the rest are pruned away.

The definition of the score function is another critical lever in which we can
incorporate and apply the theory already developed by the educational research
community. This is vital to the mission of this work, as it has been shown that the
results of automated learning methods tend not to be incorporated by the
communities they serve, despite their statistically demonstrated predictiveness, i f
the community does not feel that its existing corpus of study has been used as a
starting point for the work [3]. In other words, science is an iterative process, with
the results of previous experiments informing not just the interpretation, but also the
design and execution of subsequent studies. It would not make sense, therefore, for
machine learning techniques always to be applied de novo. One of the crucial
elements of this algorithm is the degree to which is allows for the leveraging and
systematic inclusion of existing scienti fic knowledge.

6 Results

6 .1 Resu l t s

Our experiment had two main goals: a machine learning goal of finding features
which were predictive of student performance, and a scientif ic discovery goal of
finding interpretable features which, taking into account existing scienti fic theory,
also suggested new possibly scienti fically justi f iable features.

6 .2 M a chine Lea rn ing

For this part of the experiment, we began by randomly splitting the data into two
subsets: 80% into training data, and 20% into testing data. We then applied our
algorithm to the training data. This returned the three best complex features.

Table 5: Best discovered features

Mean assessments per user, over all modules

Total assessments per user, per module

Max assessments per user, over all modules

Each of these features was then used as the independent variable in a univariate
generalized linear regression model, against the dependent variable quiz_score.
Their fitness was evaluated using the R^2 metric (measuring the amount of deviance
explained by each feature individually, relative to the null model). These features
(defined as the predicate and calculator used to create them, not the actual numerical
values as calculated over the training data) were then calculated over the held-out

testing data, and plugged into the linear models trained using the training data.
Their cross-validation error was then recorded, and compared the error of the null
model. The percentage decrease in cross validation root mean squared error was
then reported.

Figure 2. Evaluation of learned features.

The important thing to note here is that our algorithm actually did automatical ly
recover features with some predictiveness. This is important because an algorithm
that found scienti fically interpretable, but predictively meaningless features would
be of l i ttle value. In order for our technique to be useful, it must increase, at least
minimally, our abil ity to explain performance, not just semantically, but also in a
statistically significant way.

6 .3 Sc ient i f i c D i sco v ery

For this part of the evaluation, we took a closer look at the semantic interpretation
of the features discovered. For our algorithm to be val id, it should both reinforce
our existing beliefs about which factors predict student performance, and also
suggest new features that we have either had intuition about, but not been able to
formulate precisely in terms of the raw data, or which we have never considered
before. In this experiment, mean_assessments_per_user_over_all_modules is one
of these kinds of features. Semantically, this feature could represent the average
“ introspectiveness” of a given user. That is, the more self-assessments a student
takes, on average, compared to her classmates, could give an index into that
student’ s propensity for evaluating herself. She might feel insecure in her mastery
of the material. This would suggest a negative correlation with quiz_score, that is,
the less mastery a student has, the more assessments she take, and the poorer her
final quiz score. In fact, this is the opposite of what we find: a positive correlation.

Thus, presented with this evidence, an educational researcher might be forced to
rethink his theory: perhaps those students who are most motivated to study, are also
most motivated to evaluate their mastery. They keep reviewing the material unti l
they perform well on the self-assessments, and only then proceed to the final quiz,
on which they also do well. Another plausible hypothesis is that taking self-
assessments actual ly helps students master the material, which leads to better quiz
performance. It is important to note that these features and their correlations to

performance only suggest possible predictive relationships, not causal l inks. They
quanti fy the defini tion of semantic features in terms of the raw data, which is a
critical prerequisite for the design and implementation of further experiments by the
researcher to ful ly investigate these proposed models, including distinguishing
causation and correlation.

Figure 3. Positive correlation between self-assessments and quiz performance.

7 Conclusions

The main goal of this project was to automatically discover useful, complex features
in the context of a Bayes net model. These features would at once elucidate the
underlying structure of the raw data to the researcher, while at the same time hiding
the complexity of this atomic structure from the network so that the features could
be fed into even more complicated models without introducing intractable
complexity. This goal was achieved.

In addition, by finding more complicated features that are sti l l based on intuitive
atoms, we produce models that are descriptive, but sti l l interpretable and
understandable. Thus we work not only towards models with better performance,
but also towards the perhaps more important goal of furthering scientists’
understanding of the features and relationships underlying the processes they are
investigating [4].

We also found that finding novel, useful features is a difficult task. We used the
competing biases of predictiveness and interpretabil i ty to guide our search through
the feature space, while staying keenly aware of the trade-off between these two
goals. Namely, predictiveness is useful, but often times not readily semantically or
scienti fically paresable. And interpretabil ity, while more likely to be incorporated
by scientists into theory, i f not predictive, may actual ly move the state of the art
backwards. A key result of this work was finding a way to incorporate and balance
these competing goals.

8 Future Work

As we move towards data with possibly more complicated underlying model
structure, we may need to incorporate more atomic features and more iterations of
feature formation. Since the running time of the algori thm is super-exponential in
the number of features, this raises the very immediate specter of intractabil ity. To
this end, we will need to develop methods for guiding and limiting the exploration
of the predicate and calculator space intel l igently, rather than relying on an
exhaustive enumeration approach.

8 .1 B e t t er & Fa ster Sea rch

Now that we have established that relatively shal low features can be discovered, we
need to demonstrate that more complicated features can be discovered from real
data. Specif ically, we are interested in both searching more widely within each
partition of features (that is, increasing the breadth of the partition) and more deeply
(that is, running more i terations of nesting features within each other). Obviously,
each small increase in either of these dimensions greatly increases the number of
calculations needing to be performed. One mitigation of this increase would be the
construction of decomposable feature scores, that is, scores that do not have to be
computed de novo for each feature, but instead could be composed of other, already
calculated feature scores. This would allow us to incorporate more features into the
search, whi le only incurring an incremental increase in running time.

8 .2 M o re Interpre ta b le Fea tures

Along these same lines, more intell igent partitioning of the feature space could
reduce complexity while also increasing the quality of the features returned. Since
this partitioning is one of the key biases we have into the search space, it is
important to explore different ways of dividing features so as to minimize search
complexity while maximizing the predictive and descriptive power of our features.

Finally, the interpretabil ity metric used in evaluating features could be further
refined to better reflect prior beliefs. That is, some features may gain or lose
interpretabil ity when combined with others (e.g. day of week and time of day: doing
homework at midnight on Monday is very different from midnight on Friday). This
is yet another lever that could be used to guide our search.

References

[1] Friedman N., Geiger, D., and Goldszmidt, M. (1997) Bayesian network classifiers.
Machine Learning, 29:131--163.

[2] Arnold, A., Scheines, R., Beck, J., and Jerome, B. (2005). Time and Attention: Students
and Tasks. AAAI-05: Educational Data Mining, Technical Report WS-05-02. AAAI Press.

[3] M. J. Pazzani, S. Mani, W. R. Shankle (2001). Acceptance of Rules Generated by
Machine Learning among Medical Experts. Methods of Information in Medicine;
40: 380-385.

[4] Schwabacher, M., and Langley, P. (2001) Discovering communicable scientific
knowledge from spatio-temporal data. ICML.

